Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoxin Fu is active.

Publication


Featured researches published by Xiaoxin Fu.


Journal of Hazardous Materials | 2013

Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region

Yanli Zhang; Xinming Wang; Barbara Barletta; Isobel J. Simpson; D. R. Blake; Xiaoxin Fu; Zhou Zhang; Quanfu He; Tengyu Liu; Xiuying Zhao; Xiang Ding

Aromatic hydrocarbons (AHs) are both hazardous air pollutants and important precursors to ozone and secondary organic aerosols. Here we investigated 14 C6-C9 AHs at one urban, one suburban and two rural sites in the Pearl River Delta region during November-December 2009. The ratios of individual aromatics to acetylene were compared among these contrasting sites to indicate their difference in source contributions from solvent use and vehicle emissions. Ratios of toluene to benzene (T/B) in urban (1.8) and suburban (1.6) were near that of vehicle emissions. Higher T/B of 2.5 at the rural site downwind the industry zones reflected substantial contribution of solvent use while T/B of 0.8 at the upwind rural site reflected the impact of biomass burning. Source apportionment by positive matrix factorization (PMF) revealed that solvent use, vehicle exhaust and biomass burning altogether accounted for 89-94% of observed AHs. Vehicle exhaust was the major source for benzene with a share of 43-70% and biomass burning in particular contributed 30% to benzene in the upwind rural site; toluene, C8-aromatics and C9-aromatics, however, were mainly from solvent use, with contribution percentages of 47-59%, 52-59% and 41-64%, respectively.


Journal of Environmental Sciences-china | 2012

Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, south China

Xinming Wang; Xiang Ding; Xiaoxin Fu; Quanfu He; Shaoyi Wang; François Bernard; Xiuying Zhao; Dui Wu

During November-December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium. In average, these five components accounted for about 85% of PM2.5 mass and contributed 42% (OC), 19% (SO4(2-)), 12% (NO(3-)), 8.4% (NH(4+)) and 3.7% (EC), to PM2.5 mass. A relatively higher mass scattering efficiency of 5.3 m2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM2.5 mass concentrations. Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate, particulate organic matter, ammonium nitrate and EC in average contributed about 32%, 28%, 20% and 6% to the light extinction coefficients, respectively.


Journal of Environmental Sciences-china | 2014

Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China

Hairong Cheng; Wei Gong; Zuwu Wang; Fan Zhang; Xinming Wang; Xiao-pu Lv; Jia Liu; Xiaoxin Fu; Gan Zhang

In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km(2). In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PM1.0) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PM1.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhan. WSIIs (Na(+), NH4(+), K(+), Mg(2+), Ca(2+), Cl(-), NO3(-) and SO4(2-)) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan.


Environmental Science & Technology | 2014

Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal Variation and Implication in Formation Mechanisms

Quanfu He; Xiang Ding; Xinming Wang; Jian Zhen Yu; Xiaoxin Fu; Tengyu Liu; Zhou Zhang; Jian Xue; Duohong Chen; Liuju Zhong; Neil M. Donahue

Biogenic organosulfates (OSs) are important markers of secondary organic aerosol (SOA) formation involving cross reactions of biogenic precursors (terpenoids) with anthropogenic pollutants. Until now, there has been rare information about biogenic OSs in the air of highly polluted areas. In this study, fine particle (PM2.5) samples were separately collected in daytime and nighttime from summer to fall 2010 at a site in the central Pearl River Delta (PRD), South China. Pinene-derived nitrooxy-organosulfates (pNOSs) and isoprene-derived OSs (iOSs) were quantified using a liquid chromatograph (LC) coupled with a tandem mass spectrometer (MS/MS) operated in negative electrospray ionization (ESI) mode. The pNOSs with MW 295 exhibited higher levels in fall (151 ± 86.9 ng m(-3)) than summer (52.4 ± 34.0 ng m(-3)), probably owing to the elevated levels of NOx and sulfate in fall when air masses mainly passed through city clusters in the PRD and biomass burning was enhanced. In contrast to observations elsewhere where higher levels occurred at nighttime, pNOS levels in the PRD were higher during the daytime in both seasons, indicating that pNOS formation was likely driven by photochemistry over the PRD. This conclusion is supported by several lines of evidence: the specific pNOS which could be formed through both daytime photochemistry and nighttime NO3 chemistry exhibited no day-night variation in abundance relative to other pNOS isomers; the production of the hydroxynitrate that is the key precursor for this specific pNOS was found to be significant through photochemistry but negligible through NO3 chemistry based on the mechanisms in the Master Chemical Mechanism (MCM). For iOSs, 2-methyltetrol sulfate ester which could be formed from isoprene-derived epoxydiols (IEPOX) under low-NOx conditions showed low concentrations (below the detection limit to 2.09 ng m(-3)), largely due to the depression of IEPOX formation by the high NOx levels over the PRD.


Science of The Total Environment | 2014

Trends of ambient fine particles and major chemical components in the Pearl River Delta region : observation at a regional background site in fall and winter

Xiaoxin Fu; Xinming Wang; Hai Guo; Ka Lam Cheung; Xiang Ding; Xiuying Zhao; Quanfu He; Bo Gao; Zhou Zhang; Tengyu Liu; Yanli Zhang

UNLABELLED In the fall and winter of 2007 to 2011, 167 24-h quartz filter-based fine particle (PM2.5) samples were collected at a regional background site in the central Pearl River Delta. The PM2.5 showed an annual reduction trend with a rate of 8.58 μg m(-3) (p<0.01). The OC component of the PM2.5 reduced by 1.10 μg m(-3) yr(-1) (p<0.01), while the reduction rates of sulfur dioxide (SO2) and sulfate (SO4(2-)) were 10.2 μg m(-3) yr(-1) (p<0.01) and 1.72 μg m(-3) yr(-1) (p<0.01), respectively. In contrast, nitrogen oxides (NOx) and nitrate (NO(3-)) presented growth trends with rates of 6.73 μg m(-3) yr(-1) (p<0.05) and 0.79 μg m(-3) yr(-1) (p<0.05), respectively. The PM2.5 reduction was mainly related to the decrease of primary OC and SO4(2-), and the enhanced conversion efficiency of SO2 to SO4(2-) was related to an increase in the atmospheric oxidizing capacity and a decrease in aerosol acidity. The discrepancy between the annual trends of NOx and NO3(-) was attributable to the small proportion of NO3(-) in the total nitrogen budget. CAPSULE ABSTRACT Understanding annual variations of PM2.5 and its chemical composition is crucial in enabling policymakers to formulate and implement control strategies on particulate pollution.


Journal of Hazardous Materials | 2015

PM2.5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007-2012.

Xiaoxin Fu; Hai Guo; Xinming Wang; Xiang Ding; Quanfu He; Tengyu Liu; Zhou Zhang

Based on field observations and thermodynamic model simulation, the annual trend of PM2.5 acidity and its characteristics on non-hazy and hazy days in fall-winter of 2007-2012 in the Pearl River Delta region were investigated. Total acidity ([H(+)](total)) and in-situ acidity ([H(+)](in-situ)) of PM2.5 significantly decreased (F-test, p < 0.05) at a rate of -32 ± 1.5 nmol m(-3)year(-1) and -9 ± 1.7 nmol m(-3) year(-1), respectively. The variation of acidity was mainly caused by the change of the PM2.5 component, i.e., the decreasing rates of [H(+)](total) and [H(+)](in-situ) due to the decrease of sulfate (SO4(2-)) exceeded the increasing rate caused by the growth of nitrate (NO3(-)). [H(+)](total), [H(+)](in-situ) and liquid water content on hazy days were 0.9-2.2, 1.2-3.5 and 2.0-3.0 times those on non-hazy days, respectively. On hazy days, the concentration of organic matter (OM) showed significant enhancement when [H(+)](in-situ) increased (t-test, p < 0.05), while this was not observed on non-hazy days. Moreover, when the acidity was low (i.e., R = [NH4(+)]/(2 × [SO4(2-)]+[NO3(-)])>0.6), NH4NO3 was most likely formed via homogenous reaction. When the acidity was high (R ≤ 0.6), the gas-phase formation of NH4NO3 was inhibited, and the proportion of NO3(-) produced via heterogeneous reaction of N2O5 became significant.


Journal of Environmental Sciences-china | 2016

Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region.

Xiaoxin Fu; Xinming Wang; Qihou Hu; Guanghui Li; Xiang Ding; Yanli Zhang; Quanfu He; Tengyu Liu; Zhou Zhang; Qingqing Yu; Ruqing Shen; Xinhui Bi

In fall-winter, 2007-2013, visibility and light scattering coefficients (bsp) were measured along with PM2.5 mass concentrations and chemical compositions at a background site in the Pearl River Delta (PRD) region. The daily average visibility increased significantly (p<0.01) at a rate of 1.1 km/year, yet its median stabilized at ~13 km. No haze days occurred when the 24-hr mean PM2.5 mass concentration was below 75 μg/m(3). By multiple linear regression on the chemical budget of particle scattering coefficient (bsp), we obtained site-specific mass scattering efficiency (MSE) values of 6.5 ± 0.2, 2.6 ± 0.3, 2.4 ± 0.7 and 7.3 ± 1.2m(2)/g, respectively, for organic matter (OM), ammonium sulfate (AS), ammonium nitrate (AN) and sea salt (SS). The reconstructed light extinction coefficient (bext) based on the Interagency Monitoring of Protected Visual Environments (IMPROVE) algorithm with our site-specific MSE revealed that OM, AS, AN, SS and light-absorbing carbon (LAC) on average contributed 45.9% ± 1.6%, 25.6% ± 1.2%, 12.0% ± 0.7%, 11.2% ± 0.9% and 5.4% ± 0.3% to light extinction, respectively. Averaged bext displayed a significant reduction rate of 14.1/Mm·year (p<0.05); this rate would be 82% higher if it were not counteracted by increasing relative humidity (RH) and hygroscopic growth factor (f(RH)) at rates of 2.5% and 0.16/year(-1) (p<0.01), respectively, during the fall-winter, 2007-2013. This growth of RH and f(RH) partly offsets the positive effects of lowered AS in improving visibility, and aggravated the negative effects of increasing AN to impair visibility.


Atmospheric Chemistry and Physics | 2010

Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China

Xiaoxin Fu; X. Feng; Z. Q. Dong; Runsheng Yin; Jiayuan Wang; Z. R. Yang; Huiwen Zhang


Journal of Geophysical Research | 2012

Tracer‐based estimation of secondary organic carbon in the Pearl River Delta, south China

Xiang Ding; Xinming Wang; Bo Gao; Xiaoxin Fu; Quanfu He; Xiuying Zhao; Jian Zhen Yu; Mei Zheng


Atmospheric Chemistry and Physics | 2011

Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China

Xiaoxin Fu; X. Feng; P. Liang; Deliger; Huiwen Zhang; J. Ji; P. Liu

Collaboration


Dive into the Xiaoxin Fu's collaboration.

Top Co-Authors

Avatar

Xinming Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Quanfu He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiang Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tengyu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiuying Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhou Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

X. Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiwen Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanli Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Gao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge