Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quanfu He is active.

Publication


Featured researches published by Quanfu He.


Environmental Science & Technology | 2014

Source Apportionment Using Radiocarbon and Organic Tracers for PM2.5 Carbonaceous Aerosols in Guangzhou, South China: Contrasting Local- and Regional-Scale Haze Events

Junwen Liu; Jun Li; Yanlin Zhang; Di Liu; Ping Ding; C. Shen; Kaijun Shen; Quanfu He; Xiang Ding; Xinming Wang; Duohong Chen; Soenke Szidat; Gan Zhang

We conducted a source apportionment and investigated the atmospheric behavior of carbonaceous aerosols during hazy and normal days using radiocarbon ((14)C) and biomass burning/secondary organic aerosol (SOA) tracers during winter in Guangzhou, China. Haze episodes were formed either abruptly by local emissions or through the accumulation of particles transported from other areas. The average contributions of fossil carbon to elemental carbon (EC), water-insoluble organic carbon, and water-soluble organic carbon were 71 ± 10%, 40 ± 6% and 33 ± 3%, respectively. High contributions of fossil carbon to EC (80-90%) were observed for haze samples that were substantially impacted by local emissions, as were the highest (lowest) ratios for NO3(-)/SO4(2-) (OC/EC), which indicates that these particles mainly came from local vehicle exhaust. Low contributions of fossil carbon to EC (60-70%) were found for haze particles impacted by regional transport. Secondary organic carbon (SOC) calculated using SOA tracers accounts for only ∼ 20% of the SOC estimated by (14)C, which is probably because some important volatile organic carbons are not taken into account in the SOA tracer calculation method and because of the large discrepancy in ambient conditions between the atmosphere and smog chambers. A total of 33 ± 11% of the SOC was of fossil origin, a portion of which could be influenced by humidity.


Journal of Hazardous Materials | 2013

Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region

Yanli Zhang; Xinming Wang; Barbara Barletta; Isobel J. Simpson; D. R. Blake; Xiaoxin Fu; Zhou Zhang; Quanfu He; Tengyu Liu; Xiuying Zhao; Xiang Ding

Aromatic hydrocarbons (AHs) are both hazardous air pollutants and important precursors to ozone and secondary organic aerosols. Here we investigated 14 C6-C9 AHs at one urban, one suburban and two rural sites in the Pearl River Delta region during November-December 2009. The ratios of individual aromatics to acetylene were compared among these contrasting sites to indicate their difference in source contributions from solvent use and vehicle emissions. Ratios of toluene to benzene (T/B) in urban (1.8) and suburban (1.6) were near that of vehicle emissions. Higher T/B of 2.5 at the rural site downwind the industry zones reflected substantial contribution of solvent use while T/B of 0.8 at the upwind rural site reflected the impact of biomass burning. Source apportionment by positive matrix factorization (PMF) revealed that solvent use, vehicle exhaust and biomass burning altogether accounted for 89-94% of observed AHs. Vehicle exhaust was the major source for benzene with a share of 43-70% and biomass burning in particular contributed 30% to benzene in the upwind rural site; toluene, C8-aromatics and C9-aromatics, however, were mainly from solvent use, with contribution percentages of 47-59%, 52-59% and 41-64%, respectively.


Scientific Reports | 2013

Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic

Qihou Hu; Zhouqing Xie; Xinming Wang; Hui Kang; Quanfu He; Pengfei Zhang

Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m3 in the boundary layer over remote oceans.


Journal of Environmental Sciences-china | 2012

Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, south China

Xinming Wang; Xiang Ding; Xiaoxin Fu; Quanfu He; Shaoyi Wang; François Bernard; Xiuying Zhao; Dui Wu

During November-December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium. In average, these five components accounted for about 85% of PM2.5 mass and contributed 42% (OC), 19% (SO4(2-)), 12% (NO(3-)), 8.4% (NH(4+)) and 3.7% (EC), to PM2.5 mass. A relatively higher mass scattering efficiency of 5.3 m2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM2.5 mass concentrations. Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate, particulate organic matter, ammonium nitrate and EC in average contributed about 32%, 28%, 20% and 6% to the light extinction coefficients, respectively.


Environmental Science & Technology | 2014

Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal Variation and Implication in Formation Mechanisms

Quanfu He; Xiang Ding; Xinming Wang; Jian Zhen Yu; Xiaoxin Fu; Tengyu Liu; Zhou Zhang; Jian Xue; Duohong Chen; Liuju Zhong; Neil M. Donahue

Biogenic organosulfates (OSs) are important markers of secondary organic aerosol (SOA) formation involving cross reactions of biogenic precursors (terpenoids) with anthropogenic pollutants. Until now, there has been rare information about biogenic OSs in the air of highly polluted areas. In this study, fine particle (PM2.5) samples were separately collected in daytime and nighttime from summer to fall 2010 at a site in the central Pearl River Delta (PRD), South China. Pinene-derived nitrooxy-organosulfates (pNOSs) and isoprene-derived OSs (iOSs) were quantified using a liquid chromatograph (LC) coupled with a tandem mass spectrometer (MS/MS) operated in negative electrospray ionization (ESI) mode. The pNOSs with MW 295 exhibited higher levels in fall (151 ± 86.9 ng m(-3)) than summer (52.4 ± 34.0 ng m(-3)), probably owing to the elevated levels of NOx and sulfate in fall when air masses mainly passed through city clusters in the PRD and biomass burning was enhanced. In contrast to observations elsewhere where higher levels occurred at nighttime, pNOS levels in the PRD were higher during the daytime in both seasons, indicating that pNOS formation was likely driven by photochemistry over the PRD. This conclusion is supported by several lines of evidence: the specific pNOS which could be formed through both daytime photochemistry and nighttime NO3 chemistry exhibited no day-night variation in abundance relative to other pNOS isomers; the production of the hydroxynitrate that is the key precursor for this specific pNOS was found to be significant through photochemistry but negligible through NO3 chemistry based on the mechanisms in the Master Chemical Mechanism (MCM). For iOSs, 2-methyltetrol sulfate ester which could be formed from isoprene-derived epoxydiols (IEPOX) under low-NOx conditions showed low concentrations (below the detection limit to 2.09 ng m(-3)), largely due to the depression of IEPOX formation by the high NOx levels over the PRD.


Journal of Geophysical Research | 2014

Spatial distributions of secondary organic aerosols from isoprene, monoterpenes, β-caryophyllene and aromatics over China during summer

Xiang Ding; Quanfu He; Ru-Qin Shen; Qingqing Yu; Xinming Wang

Filter-based particle samples were simultaneously collected at 14 sites across 6 regions of China during the summer of 2012. These filters were analyzed for secondary organic aerosol (SOA) tracers from biogenic precursors (isoprene, monoterpenes, and β-caryophyllene) and anthropogenic aromatics. The sum of all SOA tracers ranged from 29.9 to 371 ng m−3 with the majority from isoprene (123 ± 78.8 ng m−3), followed by monoterpenes (10.5 ± 6.64 ng m−3), β-caryophyllene (5.07 ± 3.99 ng m−3), and aromatics (2.90 ± 1.52 ng m−3). The highest levels of biogenic SOA tracers were observed in East China, whereas the highest concentrations of the aromatic SOA tracer, 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), occurred in North China. All biogenic SOA tracers exhibited positive correlations with temperature, most likely resulting from enhanced biogenic volatile organic compounds (BVOCs) emissions and photochemistry in high-temperature regions. Among the isoprene SOA tracers, the low-NOx products 2-methyltetrols were the largest by mass concentration. However, at certain urban sites, the contribution of the high-NOx product 2-methylglyceric acid was significantly higher, implying a greater influence of NOx on isoprene SOA formation in urban areas. For the monoterpene SOA tracers, the ratio of the first-generation products (cis-pinonic acid plus pinic acid) to the high-generation product (3-methyl-1,2,3-butanetricarboxylic acid) exhibited a negative correlation with the amount of high-generation products, indicating that this ratio could serve as an indicator of the aging of monoterpene SOA. The ratio ranged from 0.89 to 21.0, with an average of 7.00 ± 6.02, among the observation sites, suggesting that monoterpene SOA was generally fresh over China during the summer. As a typical anthropogenic SOA tracer, DHOPA exhibited higher levels at urban sites than at remote sites. These SOA tracers were further used to attribute SOA origins via the SOA-tracer method. The total concentrations of secondary organic carbon (SOC) and SOA were estimated to be in the range of 0.37 to 2.47 μgC m−3 and 0.81 to 5.44 µg m−3, respectively, with the highest levels observed in the eastern regions of China. Isoprene (46 ± 14%) and aromatics (27 ± 8%) were the two major contributors to SOC in every region. In North China, aromatics were the largest SOA contributor. Our ground-based observations suggest that anthropogenic aromatics are important SOA precursors in China.


Science of The Total Environment | 2014

Trends of ambient fine particles and major chemical components in the Pearl River Delta region : observation at a regional background site in fall and winter

Xiaoxin Fu; Xinming Wang; Hai Guo; Ka Lam Cheung; Xiang Ding; Xiuying Zhao; Quanfu He; Bo Gao; Zhou Zhang; Tengyu Liu; Yanli Zhang

UNLABELLED In the fall and winter of 2007 to 2011, 167 24-h quartz filter-based fine particle (PM2.5) samples were collected at a regional background site in the central Pearl River Delta. The PM2.5 showed an annual reduction trend with a rate of 8.58 μg m(-3) (p<0.01). The OC component of the PM2.5 reduced by 1.10 μg m(-3) yr(-1) (p<0.01), while the reduction rates of sulfur dioxide (SO2) and sulfate (SO4(2-)) were 10.2 μg m(-3) yr(-1) (p<0.01) and 1.72 μg m(-3) yr(-1) (p<0.01), respectively. In contrast, nitrogen oxides (NOx) and nitrate (NO(3-)) presented growth trends with rates of 6.73 μg m(-3) yr(-1) (p<0.05) and 0.79 μg m(-3) yr(-1) (p<0.05), respectively. The PM2.5 reduction was mainly related to the decrease of primary OC and SO4(2-), and the enhanced conversion efficiency of SO2 to SO4(2-) was related to an increase in the atmospheric oxidizing capacity and a decrease in aerosol acidity. The discrepancy between the annual trends of NOx and NO3(-) was attributable to the small proportion of NO3(-) in the total nitrogen budget. CAPSULE ABSTRACT Understanding annual variations of PM2.5 and its chemical composition is crucial in enabling policymakers to formulate and implement control strategies on particulate pollution.


Scientific Reports | 2016

Spatial and seasonal variations of isoprene secondary organic aerosol in China: Significant impact of biomass burning during winter.

Xiang Ding; Quanfu He; Ru-Qin Shen; Qingqing Yu; Yu-Qing Zhang; Jinyuan Xin; Tianxue Wen; Xinming Wang

Isoprene is a substantial contributor to global secondary organic aerosol (SOA). The formation of isoprene SOA (SOAI) is highly influenced by anthropogenic emissions. Currently, there is rare information regarding SOAI in polluted regions. In this study, one-year concurrent observation of SOAI tracers was undertaken at 12 sites across China for the first time. The tracers formed from the HO2-channel exhibited higher concentrations at rural sites, while the tracer formed from the NO/NO2-channel showed higher levels at urban sites. 3-Methyltetrahydrofuran-3,4-diols exhibited linear correlations with their ring-opening products, C5-alkenetriols. And the slopes were steeper in the southern China than the northern China, indicating stronger ring-opening reactions there. The correlation analysis of SOAI tracers with the factor determining biogenic emission and the tracer of biomass burning (levoglucosan) implied that the high level of SOAI during summer was controlled by biogenic emission, while the unexpected increase of SOAI during winter was largely due to the elevated biomass burning emission. The estimated secondary organic carbon from isoprene (SOCI) exhibited the highest levels in Southwest China. The significant correlations of SOCI between paired sites implied the regional impact of SOAI in China. Our findings implicate that isoprene origins and SOAI formation are distinctive in polluted regions.


Journal of Hazardous Materials | 2015

PM2.5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007-2012.

Xiaoxin Fu; Hai Guo; Xinming Wang; Xiang Ding; Quanfu He; Tengyu Liu; Zhou Zhang

Based on field observations and thermodynamic model simulation, the annual trend of PM2.5 acidity and its characteristics on non-hazy and hazy days in fall-winter of 2007-2012 in the Pearl River Delta region were investigated. Total acidity ([H(+)](total)) and in-situ acidity ([H(+)](in-situ)) of PM2.5 significantly decreased (F-test, p < 0.05) at a rate of -32 ± 1.5 nmol m(-3)year(-1) and -9 ± 1.7 nmol m(-3) year(-1), respectively. The variation of acidity was mainly caused by the change of the PM2.5 component, i.e., the decreasing rates of [H(+)](total) and [H(+)](in-situ) due to the decrease of sulfate (SO4(2-)) exceeded the increasing rate caused by the growth of nitrate (NO3(-)). [H(+)](total), [H(+)](in-situ) and liquid water content on hazy days were 0.9-2.2, 1.2-3.5 and 2.0-3.0 times those on non-hazy days, respectively. On hazy days, the concentration of organic matter (OM) showed significant enhancement when [H(+)](in-situ) increased (t-test, p < 0.05), while this was not observed on non-hazy days. Moreover, when the acidity was low (i.e., R = [NH4(+)]/(2 × [SO4(2-)]+[NO3(-)])>0.6), NH4NO3 was most likely formed via homogenous reaction. When the acidity was high (R ≤ 0.6), the gas-phase formation of NH4NO3 was inhibited, and the proportion of NO3(-) produced via heterogeneous reaction of N2O5 became significant.


Journal of Environmental Sciences-china | 2016

Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region.

Xiaoxin Fu; Xinming Wang; Qihou Hu; Guanghui Li; Xiang Ding; Yanli Zhang; Quanfu He; Tengyu Liu; Zhou Zhang; Qingqing Yu; Ruqing Shen; Xinhui Bi

In fall-winter, 2007-2013, visibility and light scattering coefficients (bsp) were measured along with PM2.5 mass concentrations and chemical compositions at a background site in the Pearl River Delta (PRD) region. The daily average visibility increased significantly (p<0.01) at a rate of 1.1 km/year, yet its median stabilized at ~13 km. No haze days occurred when the 24-hr mean PM2.5 mass concentration was below 75 μg/m(3). By multiple linear regression on the chemical budget of particle scattering coefficient (bsp), we obtained site-specific mass scattering efficiency (MSE) values of 6.5 ± 0.2, 2.6 ± 0.3, 2.4 ± 0.7 and 7.3 ± 1.2m(2)/g, respectively, for organic matter (OM), ammonium sulfate (AS), ammonium nitrate (AN) and sea salt (SS). The reconstructed light extinction coefficient (bext) based on the Interagency Monitoring of Protected Visual Environments (IMPROVE) algorithm with our site-specific MSE revealed that OM, AS, AN, SS and light-absorbing carbon (LAC) on average contributed 45.9% ± 1.6%, 25.6% ± 1.2%, 12.0% ± 0.7%, 11.2% ± 0.9% and 5.4% ± 0.3% to light extinction, respectively. Averaged bext displayed a significant reduction rate of 14.1/Mm·year (p<0.05); this rate would be 82% higher if it were not counteracted by increasing relative humidity (RH) and hygroscopic growth factor (f(RH)) at rates of 2.5% and 0.16/year(-1) (p<0.01), respectively, during the fall-winter, 2007-2013. This growth of RH and f(RH) partly offsets the positive effects of lowered AS in improving visibility, and aggravated the negative effects of increasing AN to impair visibility.

Collaboration


Dive into the Quanfu He's collaboration.

Top Co-Authors

Avatar

Xinming Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiang Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanli Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhou Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qihou Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tengyu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoxin Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qingqing Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ru-Qin Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinhui Bi

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge