Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoyong Chen is active.

Publication


Featured researches published by Xiaoyong Chen.


Australian Journal of Botany | 2000

Composition, leaf area index and standing biomass of eucalypt open forests near Darwin in the Northern Territory, Australia

Anthony P. O'Grady; Xiaoyong Chen; Derek Eamus; Lindsay B. Hutley

Savanna communities dominate the wet–dry tropical regions of the world and are an important community type in monsoonal northern Australia. As such they have a significant impact on the water and carbon balance of this region. Above the 1200-mm isohyet, savanna’s are dominated by Eucalyptus miniata–E. tetrodonta open forests. We have described in detail the composition and structure as well as seasonal patterns of leaf area index and above-ground biomass in the E. miniata–E. tetrodonta open forests of the Gunn Point region near Darwin in the Northern Territory of Australia. In all, 29 tree species from four phenological guilds were recorded in these forests. Stand structure suggests that the forests were still recovering from the impacts of cyclone Tracy and subsequent frequent fires. Eucalyptus miniata and E. tetrodonta were significant contributors to overstorey leaf area index and standing biomass (>70%), and both leaf area index and biomass were strongly correlated to basal area. Leaf area index was at a maximum (about 1.0) at the end of the wet season and declined over the dry season by about 30–40%. There were proportionally greater changes in the understorey reflecting the greater contribution of deciduous and semi-deciduous species in this strata. Standing biomass was about 55 t ha –1 . Detailed descriptions of leaf area index and biomass are important inputs into the development of a water and carbon balance for the savanna’s of northern Australia.


Functional Plant Biology | 2004

Assessing the carbon sequestration potential of mesic savannas in the Northern Territory, Australia: approaches, uncertainties and potential impacts of fire

Richard J. Williams; Lindsay B. Hutley; Garry D. Cook; Jeremy Russell-Smith; Andrew C. Edwards; Xiaoyong Chen

Tropical savannas cover a quarter of the Australian landmass and the biome represents a significant potential carbon sink. However, these savannas are subject to frequent and extensive fire. Fire regimes are likely to affect the productivity and carbon sequestration potential of savannas, through effects on both biomass and carbon emissions. The carbon sequestration potential has been estimated for some savanna sites by quantifying carbon storage in biomass and soil pools, and the fluxes to these pools. Using different techniques, previous work in these savannas has indicated that net ecosystem productivity [NEP, net primary productivity (NPP) less heterotrophic respiration] was about -3 t C ha-1 y-1 (i.e. a carbon sink). However, the impacts of fire were not accounted for in these calculations. Estimates of NEP have been combined with remotely-sensed estimates of area burnt and associated emissions for an extensive area of mesic savanna in Arnhem Land, NT, Australia. Combining NEP estimates with precise fire data provides an estimate of net biome productivity (NBP), a production index that includes carbon loss through disturbance (fire), and is thus a more realistic indicator of sequestration rate from this biome. This preliminary analysis suggests that NBP is approximately -1 t C ha-1 y-1 (i.e. a carbon sink). A reduction in the annual area burnt is likely to increase the sink size. Uncertainties surrounding these estimates of NBP and the implications of these uncertainties for land management in these extensive landscapes are discussed.


Australian Journal of Botany | 2002

Root biomass and root fractal analyses of an open Eucalyptus forest in a savanna of north Australia

Derek Eamus; Xiaoyong Chen; Georgina Kelley; Lindsay B. Hutley

Below-ground biomass of a Eucalyptus savanna forest was estimated following trenching to depths of 2 m around 16 mature trees in a tropical savanna of north Australia. Correlations among below-ground and various components of above-ground biomass were also investigated. In addition, root morphology was investigated by fractal analyses and a determination of an index of shallow-rootedness was undertaken. Total root biomass was 38.4 t ha–1, including 1 t ha–1 of fine roots. About 77–90p of total root biomass was found in the upper 0.5 m of soil. While fine-root biomass density was approximately constant (0.1 kg m–3) in the top soil, irrespective of distance from a tree stem, coarse-root biomass showed large variation with distance from the tree stem. Significant positive correlations among total root biomass, total above-ground biomass, diameter at breast height, leaf biomass and leaf area were obtained. It is likely that total root biomass can be reasonably accurately estimated from aboveground biomass and fine-root biomass from tree leaf area. We present equations that allow the prediction of belowground biomass from above-ground measures of tree size. Root morphology of two evergreen and two deciduous species was compared by the use of three parameters. These were the fractal dimension (d), which describes root system complexity; a proportionality factor (α), which is the ratio of the cross-sectional area before and after branching; and two indices of shallow-rootedness (ISR). Roots were found to be amenable to fractal analyses. The proportionality factor was independent of root diameter (Dr) at any branching level in all tree species examined, indicating that branching patterns were similar across all root sizes. The fractal dimension (d) ranged from 1.15 to 1.36, indicating a relatively simple root structure. Mean d was significantly different between E. tetrodonta (evergreen) and T. ferdinandiana (deciduous); however, no significant differences were found among other pairs of species. Terminalia ferdinandiana had the highest ISR, while Planchonia careya (deciduous) had the lowest. In addition, differences in ISR between P. careya and the other three species were significant, but not significant among E. miniata, E. tetrodonta and T. ferdinandiana. There were clear relationships among above-ground tree stem diameter at breast height, stem base diameter, and horizontal and vertical proximal root diameter. By the use of mean values of and stem diameter, we estimated the total crosssectional area of root and root diameter-class distribution for each species studied.


Australian Journal of Botany | 2005

The estimation of carbon budgets of frequently burnt tree stands in savannas of northern Australia, using allometric analysis and isotopic discrimination

Garry D. Cook; Adam C. Liedloff; Robert W. Eager; Xiaoyong Chen; Richard J. Williams; Anthony P. O'Grady; Lindsay B. Hutley

The stock, rates of sequestration and allocation of carbon were estimated for trees in 14 0.1-ha plots at Kapalga in Kakadu National Park, Northern Territory, using new allometric relationships of carbon stock to stem cross-sectional area and measured growth rates of trees. Carbon stocks of trees ranged from 12 to 58 t ha–1, with sequestration representing ~9% of the total stocks. More than half of the sequestered carbon is allocated to leaves and twigs and ~20% to wood. Only ~25% is retained in the live trees with leaf and twig fall accounting for 80%–84% of the total transfers to the environment. An alternative method of calculating sequestration rates from consideration of water use and carbon-isotope discrimination data had a close to 1 : 1 match with estimates from allometric relationships. We developed and applied algorithms to predict the impacts of fire on carbon stocks of live trees. This showed that the reduction in live carbon stocks caused by single fires increased with increasing intensity, but the impact was highly dependent on the tree stand structure.


Australian Journal of Botany | 2002

Seasonal patterns of soil carbon dioxide efflux from a wet-dry tropical savanna of northern Australia

Xiaoyong Chen; Derek Eamus; Lindsay B. Hutley

Soil CO2 efflux rates were measured in a eucalypt open forest in a tropical savanna of northern Australia, with a portable closed chamber and CO2 gas analyser. Both abiotic (soil temperature and water content) and biotic (litterfall and fine-root growth) factors that may influence soil CO2 efflux were examined. Daytime rates of soil CO2 efflux rate were consistently higher than nocturnal values. Maximal rates occurred during late afternoons when soil temperatures were also maximal and minimum values were recorded during the early morning (0400-0800 hours). Average soil CO2 efflux was 5.37 mol m -2 s -1 (range 3.5-6.7 mol m -2 s -1 ) during the wet season and declined to 2.20 mol m -2 s -1 (range 1.2-3.6 mol m -2 s -1 ) during the dry season. The amount of carbon released from soil was 14.3 t ha -1 year -1 , with approximately 70% released during the wet season and 30% during the dry season. The rate of efflux was correlated with soil moisture content and soil temperature only during the wet season, when root growth and respiration were high. During the dry season there was no correlation with soil temperature. These results are discussed in relation to the carbon balance of tropical savannas.


Australian Journal of Botany | 2005

Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations

Richard J. Williams; Ayalsew Zerihun; Kelvin D. Montagu; Madonna Hoffman; Lindsay B. Hutley; Xiaoyong Chen

A fundamental tool in carbon accounting is tree-based allometry, whereby easily measured variables can be used to estimate aboveground biomass (AGB). To explore the potential of general allometry we combined raw datasets from 14 different woodland species, mainly eucalypts, from 11 sites across the Northern Territory, Queensland and New South Wales. Access to the raw data allowed two predictor variables, tree diameter (at 1.3-m height; D) and tree height (H), to be used singly or in various combinations to produce eight candidate models. Following natural log (ln) transformation, the data, consisting of 220 individual trees, were re-analysed in two steps: first as 20 species–site-specific AGB equations and, second, as a single general AGB equation. For each of the eight models, a comparison of the species–site-specific with the general equations was made with the Akaike information criterion (AIC). Further model evaluation was undertaken by a leave-one-out cross-validation technique. For each of the model forms, the species–site-specific equations performed better than the general equation. However, the best performing general equation, ln(AGB) = –2.0596 + 2.1561 ln(D) + 0.1362 (ln(H))2, was only marginally inferior to the species–site-specific equations. For the best general equation, back-transformed predicted v. observed values (on a linear scale) were highly concordant, with a slope of 0.99. The only major deviation from this relationship was due to seven large, hollow trees (more than 35% loss of cross-sectional stem area at 1.3 m) at a single species–site combination. Our best-performing general model exhibited remarkable stability across species and sites, when compared with the species–site equations. We conclude that there is encouraging evidence that general predictive equations can be developed across sites and species for Australia’s woodlands. This simplifies the conversion of long-term inventory measurements into AGB estimates and allows more resources to be focused on the extension of such inventories.


Journal of Tropical Ecology | 2004

Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia

Xiaoyong Chen; Derek Eamus; Lindsay B. Hutley

Fine roots and their turnover represent a dynamic aspect of below-ground biomass (BGB) and nutrient capital in forest ecosystems, and account for a significant fraction of net primary productivity (NPP) (Cuevas 1995, Vogt et al. 1990). On a weight basis, coarse roots contribute more to total ecosystem biomass than fine roots, but they account for only a small portion of annual root production (Eamus et al. 2002). Despite the fact that fine roots may compose less than 2% of total ecosystem biomass, they may contribute up to 40% of total ecosystem production (Vogt et al. 1990). Therefore, estimates of root production, like estimates of root biomass, should differentiate between coarse- and fine-root production.


Pedosphere | 2010

Effects of Thinning and Litter Fall Removal on Fine Root Production and Soil Organic Carbon Content in Masson Pine Plantations

Dalun Tian; Yuanying Peng; Wende Yan; Xi Fang; Wenxing Kang; Guangjun Wang; Xiaoyong Chen

Abstract Soils play a critical role in the global carbon cycle, and can be major source or sink of CO 2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecosystem in terms of water and nutrient uptake. In this study the effects of thinning and litter fall removal on fine root production and soil organic carbon content were examined in 20-year-old Masson pine ( Pinus resinosa ) plantations in Huitong, Hunan Province of China in the growing seasons of 2004 and 2005. The results showed that fine root production was significantly lower in the thinning plots than in the control plots, with a decrease of 58% and 14% in 2004 and 2005 growing seasons, respectively. Litter fall removal significantly increased fine root production by 14% in 2004. Soil temperature ( T soil ) and soil moisture ( M soil ) were higher in the thinning plots than those in the controls. Litter fall removal had significant effects on T soil and M soil . Soil organic carbon content was higher in the thinning plots but was lower in the plots with litter fall removal compared with that in the controls. Our results also indicated that annual production of fine roots resulted in small carbon accumulation in the upper layers of the soil, and removal of tree by thinning resulted in a significant increase of carbon storage in Masson pine plantations.


Australian Journal of Botany | 2011

Contribution of autotrophic and heterotrophic respiration to soil CO2 efflux in Chinese fir plantations

Dalun Tian; Guangjun Wang; Yuanying Peng; Wende Yan; Xi Fang; Fan Zhu; Xiaoyong Chen

Soil respiration (Rs) is overwhelmingly the sum of autotrophic respiration (Ra, root and rhizosphere) and heterotrophic respiration (Rh, microbes and soil fauna). Separating Rs into Ra and Rh components is a major challenge but necessary for understanding the implications of environmental change on soil C cycling and sequestration. In this study, a trenching method was employed to partition Rs sources in Chinese fir plantations in Southern China. Soil CO2 efflux (FCO2) rates were measured using an infrared gas analyser system with soil chambers at the trenched and untrenched (Control) plots from January 2007 to December 2008. Soil temperature (Tsoil) and soil water content (Wsoil) were also measured at the plots during the study period. The results showed that the mean soil FCO2 rate from trenched plots (0.88 ± 0.12 µmol m–2 s–1, mean ± s.e.) was significantly lower than that from untrenched plots (1.22 ± 0.18 µmol m–2 s–1) (P < 0.001) during the study period. Compared with Ra, Rh made a major contribution to annual flux of Rs in Chinese fir forests. The relative proportion of Rh to Rs averaged 76 and 69% in 2007 and 2008, respectively. The seasonal changes of Ra to Rs ratio ranged from 13 to 56% with a mean of 33%. The annual mean Rs was 455 ± 249 gC m–2 year–1 in the study site for the study period, of which Rh and Ra were 330 ± 219 and 125 ± 65 gC m–2 year–1, respectively. Both Rs and Rh was strongly correlated with Tsoil at a 5-cm depth, while Ra had no relationship with Tsoil. Temporal variation in Wsoil had little effect on Rs and Rh. The results indicated that the fluxes of Ra and Rh were controlled by different factors and the microbial communities, compared with roots, were likely more sensitive to global warming in affecting soil C fluxes in Chinese fir ecosystems in subtropical regions.


Pedosphere | 2014

Soil CO2 Flux in Different Types of Forests Under a Subtropical Microclimatic Environment

Wende Yan; Wang-Ming Xu; Xiaoyong Chen; Dalun Tian; Yuanying Peng; Wei Zhen; Cao Zhang; Jie Xu

The flux of carbon dioxide (CO2) from soil surface presents an important component of carbon (C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux (FCO2) in subtropical forests, soil FCO2 rates were quantified in five adjacent forest types (camphor tree forest, Masson pine forest, mixed camphor tree and Masson pine forest, Chinese sweet gum forest, and slash pine forest) at the Tianjiling National Park in Changsha, Hunan Province, in subtropical China, from January to December 2010. The influences of soil temperature (Tsoil), volumetric soil water content (θsoil), soil pH, soil organic carbon (SOC) and soil C/nitrogen (N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest (3.53 ± 0.51 μmol m−2 s−1), followed by, in order, the mixed, Masson pine, Chinese sweet gum, and slash pine forests (1.53 ± 0.25 μmol m−2 s1). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer (July and August) and the minimum values during winter (December and January). Soil FCO2 rates were correlated to Tsoil and θsoil, but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties, such as soil pH, SOC, and C/N ratio, in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.

Collaboration


Dive into the Xiaoyong Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohua Wei

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Richard J. Williams

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Rob Scherer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Garry D. Cook

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Changhui Peng

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Adam C. Liedloff

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayalsew Zerihun

Cooperative Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge