Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoyu Wu is active.

Publication


Featured researches published by Xiaoyu Wu.


Ultrasonics | 2015

Experimental investigation on sandwich structure ring-type ultrasonic motor.

Taijiang Peng; Hongyan Shi; Xiong Liang; Feng Luo; Xiaoyu Wu

This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC.


Journal of Micromechanics and Microengineering | 2014

Micro ultrasonic powder molding for semi-crystalline polymers

Xiong Liang; Xiaoyu Wu; Kun Zeng; Bin Xu; Shi-yun Wu; Hang Zhao; Bing Li; Shuang-chen Ruan

The present paper introduces micro ultrasonic powder molding (micro-UPM), a novel method for forming micro semi-crystalline polymer parts. In the proposed method, semi-crystalline polymer powder is rapidly heated and plasticized by ultrasonic vibration, after which the microcavity is filled with the melt under sonotrode pressure (PU) to form a variety of micro polymer parts. Differential scanning calorimetry, scanning electron microscopy, and nanoindentation tests demonstrate that micro-UPM UHMWPE (ultra-high molecular weight polyethylene) parts consists of nascent and melt-recrystallized phases and that energy concentrated at particle interfaces as a result of high-frequency friction, compressive deformation, and ultrasonic radiation leads to rapid diffusion and interpenetration of the chain segment. The particle interface melts result in strong co-crystallization during cooling. To investigate the effect of ultrasonic duration time (TU) on the quality of micro-UPM UHMWPE parts, different TU values are utilized to form UHMWPE parts at a PU of 16 MPa and a holding time of 5.0?s. As TU increases, the number and sizes of interparticle voids gradually decrease. A rise in the melting peak of the melt-recrystallized phase and a drop in the melting peak of the nascent phrase as well as crystallinity are further observed. When TU is only 1.5?s, the crystallinity of the micro plastic part reaches a minimum value of 54.3% and the melt-recrystallized phase fraction reaches a maximum value of 98.3%. Powder particle interfaces almost disappear in this case, and optimum quality of the micro-UPM UHMWPE part is achieved.


Ultrasonics | 2015

Investigation of a rotary ultrasonic motor using a longitudinal vibrator and spiral fin rotor.

Taijiang Peng; Xiaoyu Wu; Xiong Liang; Hongyan Shi; Feng Luo

A Langevin transducer can provide longitudinal vibration with larger amplitude while also possessing a greater fatigue life than other types of piezoelectric vibrators. A novel rotary Ultrasonic Motor (USM) was proposed based on the use of a longitudinal transducer (acting as the stator) and a spiral fin rotor: the front cover of the Langevin transducer was designed as a double-layer cup-shaped structure, with the rotor sustained by the inner-layer, and the bearing cover fixed to the outer-layer; the rotor consisted of a shaft and spiral fins which acted as the elastic coupler. It is different from a traditional traveling USM, because the stator provides longitudinal vibration and the rotor generates the elliptical motion. This paper analyzed the motion locus equation of the fin contact points. Additionally, a theoretical analysis was performed in regards to the mechanism and the motors rotor motion characteristics, which demonstrates the relationships among the motors driving force, the torque, the revolution speed, and the motor structure parameters. A motor prototype has been manufactured and surveyed to demonstrate the motor performance. The relationships between the amplitude and the preload on the rotor, the free revolution speed, and the torque of the motor have also been studied.


Scientific Reports | 2016

Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating

Jiang Ma; Xiong Liang; Xiaoyu Wu; Zhiyuan Liu; Feng Gong

The work proposed a novel thermoplastic forming approach–the ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of structures with the length scale ranging from macro scale to nano scale. Our results propose a novel route for the thermoplastic forming of BMGs and have promising applications in the rapid fabrication of macro to nano scale products and devices.


Journal of Micromechanics and Microengineering | 2016

Phase structure development as preheating UHMWPE powder temperature changes in the micro-UPM process

Xiong Liang; Xiaoyu Wu; Bin Xu; Jiang Ma; Zhiyuan Liu; Taijiang Peng; Lianyu Fu

In this study, using high-speed mechanical drilling on printed circuit boards (PCBs) with two micro carbide drill bits with diameters of 0.15 mm and 0.20 mm, two different PCB micro-cylinder array inserts are fabricated using the micro-ultrasonic powder moulding (micro-UPM) process. According to the temperature curves recorded by a measurement module, when viscoelastic heating dominated, the temperature increasing rate was about three times the rate when interfacial friction heating dominated. From the differential scanning calorimetry and nanoindentation test results, if the ultra-high molecule weight polyethylene (UHMWPE) powder was not preheated, then the micro-cylinder array polymer parts generally consisted of nascent and melt-recrystallised phases as a whole. However, when the micro-cavity and compressed UHMWPE powder grew from room temperature of 28 °C to 85 °C, the two-phase structure gradually developed into a single melt-recrystallised phase. According to single-crystal x-ray diffraction test results, the crystallinity of the base region of the micro-UPM cylinder array part is higher than that of the micro-cylinder region, whereas the grain size of the (1 1 0) crystal surface is larger than that of the (2 0 0) crystal surface.


Journal of Micromechanics and Microengineering | 2016

Micro-electrical discharge machining of 3D micro-molds from Pd40Cu30P20Ni10 metallic glass by using laminated 3D micro-electrodes

Bin Xu; Xiaoyu Wu; Jiang Ma; Xiong Liang; Jian-guo Lei; Bo Wu; Shuang-chen Ruan; Zhenlong Wang

For obtaining 3D micro-molds with better surface quality (slight ridges) and mechanical properties, in this paper 3D micro-electrodes were fabricated and applied to micro-electrical discharge machining (micro-EDM) to process Pd40Cu30P20Ni10 metallic glass. First, 100 μm-thick Cu foil was cut to obtain multilayer 2D micro-structures and these were connected to fit 3D micro-electrodes (with feature sizes of less than 1 mm). Second, under the voltage of 80 V, pulse frequency of 0.2MHZ, pulse width of 800 ns and pulse interval of 4200 ns, the 3D micro-electrodes were applied to micro-EDM for processing Pd40Cu30P20Ni10 metallic glass. The 3D micro-molds with feature within 1 mm were obtained. Third, scanning electron microscope, energy dispersive spectroscopy and x-ray diffraction analysis were carried out on the processed results. The analysis results indicate that with an increase in the depth of micro-EDM, carbon on the processed surface gradually increased from 0.5% to 5.8%, and the processed surface contained new phases (Ni12P5 and Cu3P).


Circuit World | 2015

Mechanical drilling of PCB micro hole and its application in micro ultrasonic powder molding

Xiong Liang; Bing Li; Lianyu Fu; Xiaoyu Wu; Hongyan Shi; Taijiang Peng; Bin Xu

Purpose – This paper aims to present the main factors affecting the mechanical drilling of the printed circuit board (PCB for short) micro-holes and method of micro-ultrasonic powder molding (micro-UPM for short) by utilizing PCB micro-hole array. Design/methodology/approach – To optimize the drilling process, the paper proposes the on-line monitoring methods for the drilling process including drilling force, drilling temperature, high-speed photography and vibration signals. Taking 0.10 and 0.15 mm micro-drilling as examples, the paper analyzes the drilling process of ultra-small micro-holes. Finally, by taking the PCBs with 0.10 and 0.15 mm micro-hole arrays as the micro-cavity inserts, utilizing ultra-high-molecule weight polyethylene powder with the average particle size of about 150 μm as raw material, two sizes of micro-cylinder array polymer parts are fabricated through micro-UPM process. Findings – PCB micro-cavity inserts with micro-hole arrays fabricated by mechanical drilling has the advantages...


Energies | 2017

Hierarchical Distributed Motion Control for Multiple Linear Switched Reluctance Machines

Bo Zhang; Jianping Yuan; Jianjun Luo; Xiaoyu Wu; Li Qiu; Jian Fei Pan

This paper investigates a distributed, coordinated motion control network based on multiple direct-drive, linear switched reluctance machines (LSRMs). A hierarchical, two-level synchronization control strategy is proposed for the four LSRMs based motion control network. The high-level, reference signals agreement algorithm is first employed to correct the asynchronous behaviors of the position commands. Then, the low-level tracking synchronization method is applied for the collaborative position control of the four LSRMs. The proposed two-level, fault-tolerant control strategy eliminates the asynchrony of the reference signals and it also guarantees the coordinated tracking control performance of the four LSRMs. Experimental results demonstrate that effective coordinated tracking control can be ensured, based on the successful agreement of reference signals and an absolute tracking error falling within 2 mm can be achieved.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2016

Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

Jianxun Lu; Xiaoyu Wu; Zhiyuan Liu; Xiao-qiang Chen; Bin Xu; Zhaozhi Wu; Shuang-chen Ruan

We proposed intermittent ultrasonic-assisted equal-channel angular pressing (IU-ECAP) and used it to produce ultrafine-grained copper. The main aim of this work was to investigate the microstructure and mechanical properties of copper processed by IU-ECAP. We performed experiments with two groups of specimens: group 1 used conventional ECAP, and group 2 combined ECAP with intermittent ultrasonic vibration. The extrusion forces, microstructure, mechanical properties, and thermal stability of the two groups were compared. It was revealed that more homogeneous microstructure with smaller grains could be obtained by IU-ECAP compared with copper obtained using the traditional ECAP method. Mechanical testing showed that IU-ECAP significantly reduced the extrusion force and increased both the hardness and ultimate tensile stress owing to the higher dislocation density and smaller grains. IU-ECAP promotes conversion from low-angle grain boundaries to high-angle grain boundaries, and it increases the fractions of subgrains and dynamic recrystallized grains. Group 2 statically recrystallized at a higher temperature or longer duration than group 1, showing that group 2 had better thermal stability.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2018

The Femtosecond Laser Ablation on Ultrafine-Grained Copper

Jianxun Lu; Xiaoyu Wu; Shuang-chen Ruan; Dengji Guo; Chen-lin Du; Xiong Liang; Zhaozhi Wu

To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

Collaboration


Dive into the Xiaoyu Wu's collaboration.

Top Co-Authors

Avatar

Bin Xu

Shenzhen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiong Liang

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Qiu

Shenzhen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge