Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xidong Duan is active.

Publication


Featured researches published by Xidong Duan.


Nature Nanotechnology | 2014

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions

Xidong Duan; Chen Wang; Jonathan C. Shaw; Rui Cheng; Y. Chen; Honglai Li; Xueping Wu; Ying Tang; Qinling Zhang; Anlian Pan; Jianhui Jiang; Ruqing Yu; Yu Huang; Xiangfeng Duan

Two-dimensional layered semiconductors such as MoS₂ and WSe₂ have attracted considerable interest in recent times. Exploring the full potential of these layered materials requires precise spatial modulation of their chemical composition and electronic properties to create well-defined heterostructures. Here, we report the growth of compositionally modulated MoS₂-MoSe₂ and WS₂-WSe₂ lateral heterostructures by in situ modulation of the vapour-phase reactants during growth of these two-dimensional crystals. Raman and photoluminescence mapping studies demonstrate that the resulting heterostructure nanosheets exhibit clear structural and optical modulation. Transmission electron microscopy and elemental mapping studies reveal a single crystalline structure with opposite modulation of sulphur and selenium distributions across the heterostructure interface. Electrical transport studies demonstrate that the WSe₂-WS₂ heterojunctions form lateral p-n diodes and photodiodes, and can be used to create complementary inverters with high voltage gain. Our study is an important advance in the development of layered semiconductor heterostructures, an essential step towards achieving functional electronics and optoelectronics.


Journal of the American Chemical Society | 2014

Growth of Alloy MoS2xSe2(1–x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties

Honglai Li; Xidong Duan; Xueping Wu; Xiujuan Zhuang; Hong Zhou; Qinglin Zhang; Xiaoli Zhu; Wei Hu; Pinyun Ren; Pengfei Guo; Liang Ma; Xiaopeng Fan; Xiaoxia Wang; Jinyou Xu; Anlian Pan; Xiangfeng Duan

Band gap engineering of atomically thin two-dimensional layered materials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, a simple one-step chemical vapor deposition approach for the simultaneous growth of alloy MoS2xSe2(1-x) triangular nanosheets with complete composition tunability. Both the Raman and the photoluminescence studies show tunable optical properties consistent with composition of the alloy nanosheets. Importantly, all samples show a single bandedge emission peak, with the spectral peak position shifting from 668 nm (for pure MoS2) to 795 nm (for pure MoSe2), indicating the high quality for these complete composition alloy nanosheets. These band gap engineered 2D structures could open up an exciting opportunity for probing their fundamental physical properties in 2D and may find diverse applications in functional electronic/optoelectronic devices.


Journal of the American Chemical Society | 2015

Lateral Growth of Composition Graded Atomic Layer MoS2(1–x)Se2x Nanosheets

Honglai Li; Qinglin Zhang; Xidong Duan; Xueping Wu; Xiaopeng Fan; Xiaoli Zhu; Xiujuan Zhuang; Wei Hu; Hong Zhou; Anlian Pan; Xiangfeng Duan

Band gap engineering of transition-metal dichalcogenides is an important task for their applications in photonics, optoelectronics, and nanoelectronics. We report for the first time the continuous lateral growth of composition graded bilayer MoS(2(1-x))Se(2x) alloys along single triangular nanosheets by an improved chemical vapor deposition approach. From the center to the edge of the nanosheet, the composition can be gradually tuned from x = 0 (pure MoS2) to x = 0.68, leading to the corresponding bandgap being continuously modulated from 1.82 eV (680 nm) to 1.64 eV (755 nm). Local photoluminescence scanning from the center to the edge gives single band edge emission peaks, indicating high crystalline quality for the achieved alloy nanosheets, which was further demonstrated by the microstructure characterizations. These novel 2D structures offer an interesting system for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.


ACS Nano | 2016

Functional Three-Dimensional Graphene/Polymer Composites

Meng Wang; Xidong Duan; Yuxi Xu; Xiangfeng Duan

Integration of graphene with polymers to construct three-dimensional porous graphene/polymer composites (3DGPCs) has attracted considerable attention in the past few years for both fundamental studies and diverse technological applications. With the broad diversity in molecular structures of graphene and polymers via rich chemical routes, a number of 3DGPCs have been developed with unique structural, electrical, and mechanical properties, chemical tenability, and attractive functions, which greatly expands the research horizon of graphene-based composites. In particular, the properties and functions of the 3DGPCs can be readily tuned by precisely controlling the hierarchical porosity in the 3D graphene architecture as well as the intricate synergistic interactions between graphene and polymers. In this paper, we review the recent progress in 3DGPCs, including their synthetic strategies and potential applications in environmental protection, energy storage, sensors, and conducting composites. Lastly, we will conclude with a brief perspective on the challenges and future opportunities.


Nano Letters | 2016

Synthesis of WS2xSe2–2x Alloy Nanosheets with Composition-Tunable Electronic Properties

Xidong Duan; Chen Wang; Zheng Fan; Guolin Hao; Liangzhi Kou; Udayabagya Halim; Honglai Li; Xueping Wu; Yicheng Wang; Jianhui Jiang; Anlian Pan; Yu Huang; Ruqin Yu; Xiangfeng Duan

Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently emerged as a new class of atomically thin semiconductors for diverse electronic, optoelectronic, and valleytronic applications. To explore the full potential of these 2D semiconductors requires a precise control of their band gap and electronic properties, which represents a significant challenge in 2D material systems. Here we demonstrate a systematic control of the electronic properties of 2D-TMDs by creating mixed alloys of the intrinsically p-type WSe2 and intrinsically n-type WS2 with variable alloy compositions. We show that a series of WS2xSe2-2x alloy nanosheets can be synthesized with fully tunable chemical compositions and optical properties. Electrical transport studies using back-gated field effect transistors demonstrate that charge carrier types and threshold voltages of the alloy nanosheet transistors can be systematically tuned by adjusting the alloy composition. A highly p-type behavior is observed in selenium-rich alloy, which gradually shifts to lightly p-type, and then switches to lightly n-type characteristics with the increasing sulfur atomic ratio, and eventually evolves into highly n-doped semiconductors in sulfur-rich alloys. The synthesis of WS2xSe2-2x nanosheets with tunable optical and electronic properties represents a critical step toward rational design of 2D electronics with tailored spectral responses and device characteristics.


Science | 2017

Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices

Zhengwei Zhang; Peng Chen; Xidong Duan; Ketao Zang; Jun Luo; Xiangfeng Duan

Cycling 2D crystal growth The electronic and optical properties of two-dimensional (2D) transitional metal dichalcogenides such as MoS2 and WSe2 could be modulated by creating in-plane superlattices and heterostructures from these materials. However, single layers of these materials are fragile and often do not withstand the processing conditions needed during subsequent growth steps. Zhang et al. developed a reverse-flow reactor that avoids thermal degradation and unwanted crystal nucleation. They demonstrate several examples of block-by-block epitaxial growth, such as 2D heterostructures where MoS2 surrounds a WS2 core and superlattices where the composition alternates between WS2 and WSe2. Science, this issue p. 788 Cooling of two-dimensional crystals preserves their structures during subsequent growth cycles. We report a general synthetic strategy for highly robust growth of diverse lateral heterostructures, multiheterostructures, and superlattices from two-dimensional (2D) atomic crystals. A reverse flow during the temperature-swing stage in the sequential vapor deposition growth process allowed us to cool the existing 2D crystals to prevent undesired thermal degradation and uncontrolled homogeneous nucleation, thus enabling highly robust block-by-block epitaxial growth. Raman and photoluminescence mapping studies showed that a wide range of 2D heterostructures (such as WS2-WSe2 and WS2-MoSe2), multiheterostructures (such as WS2-WSe2-MoS2 and WS2-MoSe2-WSe2), and superlattices (such as WS2-WSe2-WS2-WSe2-WS2) were readily prepared with precisely controlled spatial modulation. Transmission electron microscope studies showed clear chemical modulation with atomically sharp interfaces. Electrical transport studies of WSe2-WS2 lateral junctions showed well-defined diode characteristics with a rectification ratio up to 105.


Nano Research | 2017

Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications

Yiliu Wang; Xun Guan; Dehui Li; Hung-Chieh Cheng; Xidong Duan; Zhaoyang Lin; Xiangfeng Duan

Organic–inorganic hybrid halide perovskites, such as CH3NH3PbI3, have emerged as an exciting class of materials for solar photovoltaic applications; however, they are currently plagued by insufficient environmental stability. To solve this issue, all-inorganic halide perovskites have been developed and shown to exhibit significantly improved stability. Here, we report a single-step chemical vapor deposition growth of cesium lead halide (CsPbX3) microcrystals. Optical microscopy studies show that the resulting perovskite crystals predominantly adopt a square-platelet morphology. Powder X-ray diffraction (PXRD) studies of the resulting crystals demonstrate a highly crystalline nature, with CsPbCl3, CsPbBr3, and CsPbI3 showing tetragonal, monoclinic, and orthorhombic phases, respectively. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies show that the resulting platelets exhibit well-faceted structures with lateral dimensions of the order of 10–50 μm, thickness around 1 μm, and ultra-smooth surface, suggesting the absence of obvious grain boundaries and the single-crystalline nature of the individual microplatelets. Photoluminescence (PL) images and spectroscopic studies show a uniform and intense emission consistent with the expected band edge transition. Additionally, PL images show brighter emission around the edge of the platelets, demonstrating a wave-guiding effect in high-quality crystals. With a well-defined geometry and ultra-smooth surface, the square platelet structure can function as a whispering gallery mode cavity with a quality factor up to 2,863 to support laser emission at room temperature. Finally, we demonstrate that such microplatelets can be readily grown on a variety of substrates, including silicon, graphene, and other two-dimensional materials such as molybdenum disulfide, which can readily allow the construction of heterostructure optoelectronic devices, including a graphene/perovskite/graphene vertically-stacked photodetector with photoresponsivity > 105 A/W. The extraordinary optical properties of CsPbX3 platelets, combined with their ability to be grown on diverse materials to form functional heterostructures, can lead to exciting opportunities for broad optoelectronic applications.


Nano Research | 2016

Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination

Weiqing Kong; Xidong Duan; Yongjie Ge; Hongtao Liu; Jiawen Hu; Xiangfeng Duan

Capacitive deionization is an attractive approach to water desalination and treatment. To achieve efficient capacitative desalination, rationally designed electrodes with high specific capacitances, conductivities, and stabilities are necessary. Here we report the construction of a three-dimensional (3D) holey graphene hydrogel (HGH). This material contains abundant in-plane pores, offering efficient ion transport pathways. Furthermore, it forms a highly interconnected network of graphene sheets, providing efficient electron transport pathways, and its 3D hierarchical porous structure can provide a large specific surface area for the adsorption and storage of ions. Consequently, HGH serves as a binder-free electrode material with excellent electrical conductivity. Cyclic voltammetry (CV) measurements indicate that the optimized HGH can achieve specific capacitances of 358.4 F·g−1 in 6 M KOH solution and 148 F·g−1 in 0.5 M NaCl solution. Because of these high capacitances, HGH has a desalination capacity as high as 26.8 mg·g−1 (applied potential: 1.2 V; initial NaCl concentration: ~5,000 mg·L−1).


Small | 2017

Synthesis of 2D Layered BiI3 Nanoplates, BiI3/WSe2van der Waals Heterostructures and Their Electronic, Optoelectronic Properties

Jia Li; Xun Guan; Chen Wang; Hung-Chieh Cheng; Ruoqi Ai; Kangkang Yao; Peng Chen; Zhengwei Zhang; Xidong Duan; Xiangfeng Duan

Two-dimensional layered materials (2DLMs) have attracted considerable recent interest as a new material platform for fundamental materials science and potential new technologies. Here we report the growth of layered metal halide materials and their optoelectronic properties. BiI3 nanoplates can be readily grown on SiO2 /Si substrates with a hexagonal geometry, with a thickness in the range of 10-120 nm and a lateral dimension of 3-10 µm. Transmission electron microscopy and electron diffraction studies demonstrate that the individual nanoplates are high quality single crystals. Micro-Raman studies show characteristic Ag band at ≈115 cm-1 with slight red-shift with decreasing thickness, and micro-photoluminescence studies show uniform emission around 690 nm with blue-shift with decreasing thickness. Electrical transport studies of individual nanoplates show n-type semiconductor characteristics with clear photoresponse. Further, the BiI3 can be readily grown on other 2DLMs (e.g., WSe2 ) to form van der Waals heterostructures. Electrical transport measurements of BiI3 /WSe2 vertical heterojunctions demonstrate p-n diode characteristics with gate-tunable rectification behavior and distinct photovoltaic effect. The synthesis of the BiI3 nanoplates can expand the library of 2DLMs and enable a wider range of van der Waals heterostructures.


ACS Nano | 2017

Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals Heterostructures, and Patterned Arrays

Ruoqi Ai; Xun Guan; Jia Li; Kangkang Yao; Peng Chen; Zhengwei Zhang; Xidong Duan; Xiangfeng Duan

Two-dimensional layered materials (2DLMs) have attracted considerable recent interest for their layer-number-dependent physical and chemical properties, as well as potential technological opportunities. Here we report the synthesis of two-dimensional layered cadmium iodide (CdI2) nanoplates using a vapor transport and deposition approach. Optical microscopy and scanning electron microscopy studies show that the resulting CdI2 nanoplates predominantly adopt hexagonal and triangular morphologies with a lateral dimension of ∼2-10 μm. Atomic force microscopy studies show that the resulting nanoplates exhibit a thickness in the range of 5-220 nm with a relatively smooth surface. X-ray diffraction studies reveal highly crystalline CdI2 in hexagonal phase, which is also confirmed by the characteristic Raman Ag mode at 110 cm-1. High-resolution transmission electron microscopy and selected area electron diffraction reveal that the resulting CdI2 nanoplates are single crystals. Taking a step further, we show the CdI2 nanoplates were readily grown on other 2DLMs (e.g., WS2, WSe2, MoS2), forming diverse van der Waals heterostructures. Using prepatterned WS2 monolayer square arrays as the nucleation and growth templates, we also show that regular arrays of CdI2/WS2 vertical heterostructures can be prepared. The synthesis of the CdI2 nanoplates, heterostructures, and heterostructure arrays offers a valuable material system for 2D materials science and technology.

Collaboration


Dive into the Xidong Duan's collaboration.

Top Co-Authors

Avatar

Xiangfeng Duan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Huang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge