Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xijing Zhang is active.

Publication


Featured researches published by Xijing Zhang.


The Journal of Neuroscience | 2007

The Itch-Producing Agents Histamine and Cowhage Activate Separate Populations of Primate Spinothalamic Tract Neurons

Steve Davidson; Xijing Zhang; Chul H. Yoon; Sergey G. Khasabov; Donald A. Simone; Glenn J. Giesler

Itch is an everyday sensation, but when associated with disease or infection it can be chronic and debilitating. Several forms of itch can be blocked using antihistamines, but others cannot and these constitute an important clinical problem. Little information is available on the mechanisms underlying itch that is produced by nonhistaminergic mechanisms. We examined the responses of spinothalamic tract neurons to histaminergic and, for the first time, nonhistaminergic forms of itch stimuli. Fifty-seven primate spinothalamic tract (STT) neurons were identified using antidromic activation techniques and examined for their responses to histamine and cowhage, the nonhistaminergic itch-producing spicules covering the pod of the legume Mucuna pruriens. Each examined neuron had a receptive field on the hairy skin of the hindlimb and responded to noxious mechanical stimulation. STT neurons were tested with both pruritogens applied in a random order and we found 12 that responded to histamine and seven to cowhage. Each pruritogen-responsive STT neuron was activated by the chemical algogen capsaicin and two-thirds responded to noxious heat stimuli, demonstrating that these neurons convey chemical, thermal, and mechanical nociceptive information as well. Histamine or cowhage responsive STT neurons were found in both the marginal zone and the deep dorsal horn and were classified as high threshold and wide dynamic range. Unexpectedly, histamine and cowhage never activated the same cell. Our results demonstrate that the spinothalamic tract contains mutually exclusive populations of neurons responsive to histamine or the nonhistaminergic itch-producing agent cowhage.


Nature Neuroscience | 2009

Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons

Steve Davidson; Xijing Zhang; Sergey G. Khasabov; Donald A. Simone; Glenn J. Giesler

Itch is relieved by scratching, but the neural mechanisms that are responsible for this are unknown. Spinothalamic tract (STT) neurons respond to itch-producing agents and transmit pruritic information to the brain. We observed that scratching the cutaneous receptive field of primate STT neurons produced inhibition during histamine-evoked activity but not during spontaneous activity or activity evoked by a painful stimulus, suggesting that scratching inhibits the transmission of itch in the spinal cord in a state-dependent manner.


Pain | 2001

Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus

William D. Willis; Xijing Zhang; Christopher N. Honda; Glenn J. Giesler

&NA; It has been concluded recently that if a projection from the marginal zone to the ventral posterior lateral (VPL) nucleus exists, it is sparse. Given the importance of the marginal zone in nociception, this conclusion has raised doubts about the significance of the role of the ventrobasal complex in nociception. We have reexamined this projection using injections of the retrograde tracer, cholera toxin subunit B, into one side of the lateral thalamus in macaque monkeys. The injections were confined to the ventrobasal complex (with minimal spread to adjacent nuclei that do not receive spinal projections) in two animals. Many retrogradely labeled neurons were found in lamina I (as well as in lamina V) of the contralateral spinal and medullary dorsal horn. The results are consistent with the view that neurons in the marginal zone contribute prominently to the spinothalamic and trigeminothalamic projections to the VPL and ventral posterior medial (VPM) nuclei. This pathway is likely to be important for the sensory‐discriminative processing of nociceptive information with respect to the location and intensity of painful stimuli.


Journal of Neurophysiology | 2012

Pruriceptive spinothalamic tract neurons: physiological properties and projection targets in the primate

Steve Davidson; Xijing Zhang; Sergey G. Khasabov; Hannah R. Moser; Christopher N. Honda; Donald A. Simone; Glenn J. Giesler

Itch of peripheral origin requires information transfer from the spinal cord to the brain for perception. Here, primate spinothalamic tract (STT) neurons from lumbar spinal cord were functionally characterized by in vivo electrophysiology to determine the role of these cells in the transmission of pruriceptive information. One hundred eleven STT neurons were identified by antidromic stimulation and then recorded while histamine and cowhage (a nonhistaminergic pruritogen) were sequentially applied to the cutaneous receptive field of each cell. Twenty percent of STT neurons responded to histamine, 13% responded to cowhage, and 2% responded to both. All pruriceptive STT neurons were mechanically sensitive and additionally responded to heat, intradermal capsaicin, or both. STT neurons located in the superficial dorsal horn responded with greater discharge and longer duration to pruritogens than STT neurons located in the deep dorsal horn. Pruriceptive STT neurons discharged in a bursting pattern in response to the activating pruritogen and to capsaicin. Microantidromic mapping was used to determine the zone of termination for pruriceptive STT axons within the thalamus. Axons from histamine-responsive and cowhage-responsive STT neurons terminated in several thalamic nuclei including the ventral posterior lateral, ventral posterior inferior, and posterior nuclei. Axons from cowhage-responsive neurons were additionally found to terminate in the suprageniculate and medial geniculate nuclei. Histamine-responsive STT neurons were sensitized to gentle stroking of the receptive field after the response to histamine, suggesting a spinal mechanism for alloknesis. The results show that pruriceptive information is encoded by polymodal STT neurons in histaminergic or nonhistaminergic pathways and transmitted to the ventrobasal complex and posterior thalamus in primates.


The Journal of Neuroscience | 2006

Thermally Identified Subgroups of Marginal Zone Neurons Project to Distinct Regions of the Ventral Posterior Lateral Nucleus in Rats

Xijing Zhang; Steve Davidson; Glenn J. Giesler

Spinal marginal zone (MZ) neurons play a crucial role in the transmission of nociceptive and thermoreceptive information to the brain. The precise areas to which physiologically characterized MZ neurons project in the ventral posterior lateral (VPL) nucleus of the thalamus have not been clearly established. Here, we examine this projection in rats using the method of antidromic activation to map the axon terminals of neurons recorded from the MZ. Thirty-three neurons were antidromically activated using pulses of ≤30 μA in the contralateral VPL. In every case, the most rostral point from which the MZ neuron could be antidromically activated was surrounded by stimulating tracks in which large-amplitude current pulses failed to activate the examined neuron, indicating the termination of the spinothalamic tract (STT) axon. Each of 30 examined neurons responded to noxious but not innocuous mechanical stimuli applied to their cutaneous receptive fields, which ranged in size from two digits to the entire limb. Of 17 thermally tested neurons, 16 responded to innocuous or noxious thermal stimuli. Among STT neurons that responded to thermal stimuli, 50% responded to innocuous cooling as well as noxious heat and cold, 31% responded to noxious heat and cold, and 19% responded only to noxious heat. Axons from cells responsive to innocuous cooling terminated in the core region of VPL, significantly dorsal and medial relative to other thermally responsive subgroups. In rats, thermally responsive subgroups of MZ neurons project directly to distinct regions of VPL.


Journal of Neurophysiology | 2008

Termination Zones of Functionally Characterized Spinothalamic Tract Neurons Within the Primate Posterior Thalamus

Steve Davidson; Xijing Zhang; Sergey G. Khasabov; Donald A. Simone; Glenn J. Giesler

The primate posterior thalamus has been proposed to contribute to pain sensation, but its precise role is unclear. This is in part because spinothalamic tract (STT) neurons that project to the posterior thalamus have received little attention. In this study, antidromic mapping was used to identify individual STT neurons with axons that projected specifically to the posterior thalamus in Macaca fascicularis. Each axon was located by antidromic activation at low stimulus amplitudes (<30 microA) and was then surrounded distally by a grid of stimulating points in which 500-microA stimuli were unable to activate the axon antidromically, thereby indicating the termination zone. Several nuclei within the posterior thalamus were targets of STT neurons: the posterior nucleus, suprageniculate nucleus, magnocellular part of the medial geniculate nucleus, and limitans nucleus. STT neurons projecting to the ventral posterior inferior nucleus were also studied. Twenty-five posterior thalamus-projecting STT neurons recorded in lumbar spinal cord were characterized by their responses to mechanical, thermal, and chemical stimuli. Sixteen of 25 neurons were recorded in the marginal zone and the balance was located within the deep dorsal horn. Thirteen neurons were classified as wide dynamic range and 12 as high threshold. One-third of STT neurons projecting to posterior thalamus responded to noxious heat (50 degrees C). Two-thirds of those tested responded to cooling. Seventy-one percent responded to an intradermal injection of capsaicin. These data indicate that the primate STT transmits noxious and innocuous mechanical, thermal, and chemical information to multiple posterior thalamic nuclei.


Somatosensory and Motor Research | 2002

Responses of spinohypothalamic tract neurons in the thoracic spinal cord of rats to somatic stimuli and to graded distention of the bile duct

Xijing Zhang; Alex P. Gokin; Glenn J. Giesler

Anatomical studies indicate that a relatively large percentage of spinohypothalamic tract (SHT) neurons are located within thoracic spinal segments. The aim of this study was to characterize the responses of SHT neurons in these segments of rats to innocuous and noxious stimulation of the skin and of a visceral structure, the bile duct. In addition, we attempted to determine the trajectories of the axons of the examined neurons within the diencephalon and brainstem. Fifty-three SHT neurons were recorded within segments T8-T13 in urethane anesthetized rats. Each cell was antidromically activated using current pulses ″30 w A delivered from the tip of an electrode located within the contralateral hypothalamus. The recording points were located in the superficial dorsal horn (9) and deep dorsal horn (44). All examined SHT neurons had receptive fields on the posterior thorax and anterior and ventral abdomen of the ipsilateral side. Ninety percent of the 41 SHT neurons responded exclusively (13) or preferentially (24) to noxious cutaneous stimuli. Thirteen of 27 (48%) examined units were activated by forceful distention of the bile duct. Response thresholds ranged from 30 to 40 mmHg. Responses incremented as pressures were increased to 50-80 mmHg. The axons of 22 of 28 (79%) examined SHT neurons appeared to cross the midline within the hypothalamus and terminate in the ipsilateral hypothalamus, thalamus or midbrain. The results indicate that SHT neurons in thoracic spinal cord of rats are capable of conveying somatic and visceral nociceptive information from the bile duct directly to targets at various levels of the brain bilaterally.


Journal of Neuroscience Methods | 1997

A method for improving the accuracy of stereotaxic procedures in monkeys using implanted fiducial markers in CT scans that also serve as anchor points in a stereotaxic frame.

D.W Risher; Xijing Zhang; E Kostarczyk; A.P Gokin; C.N Honda; Glenn J. Giesler

We developed a relatively inexpensive method for stereotaxic placement of electrodes or needles in the brains of monkeys. Steel balls were affixed to the skulls of monkeys. These balls served as fiducial markers and were also used as points at which the monkeys skull was held in a modified stereotaxic apparatus. Computed tomography (CT) was used to establish the location of an injection target with respect to the fiducial markers. A computer program related the CT coordinates to stereotaxic coordinates. These were used to direct an electrode marker toward a target in the hypothalamus. With the marker left in place, the monkey was removed from the stereotaxic frame and a second CT scan was performed. Corrections for errors in marker placement were made and retrograde tracers were injected. This procedure was found to be more accurate and reliable than conventional stereotaxic procedures. The accuracy and repeatability of the technique were also established using a phantom model of a monkeys skull. Two important advantages of this method are that animals can be repeatedly placed into the stereotaxic frame in precisely the same position and that there are many opportunities during the procedure to check for and correct errors.


Pain | 2018

Involvement of the VGF-derived peptide TLQP-62 in nerve injury–induced hypersensitivity and spinal neuroplasticity

Alexander G. J. Skorput; Xijing Zhang; Jonathan J. Waataja; C. Peterson; Maureen Riedl; Kelley F. Kitto; Hai Truong; Cecilia Huffman; Stephen R. Salton; Carolyn A. Fairbanks; Christopher N. Honda; Lucy Vulchanova

Abstract Neuroplasticity in the dorsal horn after peripheral nerve damage contributes critically to the establishment of chronic pain. The neurosecretory protein VGF (nonacronymic) is rapidly and robustly upregulated after nerve injury, and therefore, peptides generated from it are positioned to serve as signals for peripheral damage. The goal of this project was to understand the spinal modulatory effects of the C-terminal VGF-derived peptide TLQP-62 at the cellular level and gain insight into the function of the peptide in the development of neuropathic pain. In a rodent model of neuropathic pain, we demonstrate that endogenous levels of TLQP-62 increased in the spinal cord, and its immunoneutralization led to prolonged attenuation of the development of nerve injury–induced hypersensitivity. Using multiphoton imaging of submaximal glutamate-induced Ca2+ responses in spinal cord slices, we demonstrate the ability of TLQP-62 to potentiate glutamatergic responses in the dorsal horn. We further demonstrate that the peptide selectively potentiates responses of high-threshold spinal neurons to mechanical stimuli in singe-unit in vivo recordings. These findings are consistent with a function of TLQP-62 in spinal plasticity that may contribute to central sensitization after nerve damage.


The Journal of Pain | 2002

A critical review of the role of the proposed VMpo nucleus in pain

William D. Willis; Xijing Zhang; Christopher N. Honda; Glenn J. Giesler

Collaboration


Dive into the Xijing Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Davidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William D. Willis

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge