Xin Cheng
Children's Hospital of Philadelphia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xin Cheng.
Cell Stem Cell | 2008
M. Cristina Nostro; Xin Cheng; Gordon Keller; Paul Gadue
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.
Cell Stem Cell | 2012
Xin Cheng; Lei Ying; Lin Lu; Aline M. Galvão; Jason A. Mills; Henry C. Lin; Darrell N. Kotton; Steven S. Shen; M. Cristina Nostro; John K. Choi; Mitchell J. Weiss; Deborah L. French; Paul Gadue
The use of human pluripotent stem cells for laboratory studies and cell-based therapies is hampered by their tumor-forming potential and limited ability to generate pure populations of differentiated cell types in vitro. To address these issues, we established endodermal progenitor (EP) cell lines from human embryonic and induced pluripotent stem cells. Optimized growth conditions were established that allow near unlimited (>10(16)) EP cell self-renewal in which they display a morphology and gene expression pattern characteristic of definitive endoderm. Upon manipulation of their culture conditions in vitro or transplantation into mice, clonally derived EP cells differentiate into numerous endodermal lineages, including monohormonal glucose-responsive pancreatic β-cells, hepatocytes, and intestinal epithelia. Importantly, EP cells are nontumorigenic in vivo. Thus, EP cells represent a powerful tool to study endoderm specification and offer a potentially safe source of endodermal-derived tissues for transplantation therapies.
Nature Cell Biology | 2015
Andrea Ditadi; Christopher M. Sturgeon; Joanna Tober; Geneve Awong; Marion Kennedy; Amanda D. Yzaguirre; Lisa Azzola; Elizabeth S. Ng; Edouard G. Stanley; Deborah L. French; Xin Cheng; Paul Gadue; Nancy A. Speck; Andrew G. Elefanty; Gordon Keller
The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) will depend on the accurate recapitulation of embryonic haematopoiesis. In the early embryo, HSCs develop from the haemogenic endothelium (HE) and are specified in a Notch-dependent manner through a process named endothelial-to-haematopoietic transition (EHT). As HE is associated with arteries, it is assumed that it represents a subpopulation of arterial vascular endothelium (VE). Here we demonstrate at a clonal level that hPSC-derived HE and VE represent separate lineages. HE is restricted to the CD34+CD73−CD184− fraction of day 8 embryoid bodies and it undergoes a NOTCH-dependent EHT to generate RUNX1C+ cells with multilineage potential. Arterial and venous VE progenitors, in contrast, segregate to the CD34+CD73medCD184+ and CD34+CD73hiCD184− fractions, respectively. Together, these findings identify HE as distinct from VE and provide a platform for defining the signalling pathways that regulate their specification to functional HSCs.
Development | 2008
Xin Cheng; Tara L. Huber; Vincent C. Chen; Paul Gadue; Gordon Keller
During embryonic development, the establishment of the primitive erythroid lineage in the yolk sac is a temporally and spatially restricted program that defines the onset of hematopoiesis. In this report, we have used the embryonic stem cell differentiation system to investigate the regulation of primitive erythroid development at the level of the hemangioblast. We show that the combination of Wnt signaling with inhibition of the Notch pathway is required for the development of this lineage. Inhibition of Notch signaling at this stage appears to be mediated by the transient expression of Numb in the hemangioblast-derived blast cell colonies. Activation of the Notch pathway was found to inhibit primitive erythropoiesis efficiently through the upregulation of inhibitors of the Wnt pathway. Together, these findings demonstrate that specification of the primitive erythroid lineage is controlled, in part, by the coordinated interaction of the Wnt and Notch pathways, and position Numb as a key mediator of this process.
Nature Biotechnology | 2008
Vincent C. Chen; Robert Stull; Daniel Joo; Xin Cheng; Gordon Keller
To efficiently generate cardiomyocytes from embryonic stem (ES) cells in culture it is essential to identify key regulators of the cardiac lineage and to develop methods to control them. Using a tet-inducible mouse ES cell line to enforce expression of a constitutively activated form of the Notch 4 receptor, we show that signaling through the Notch pathway can efficiently respecify hemangioblasts to a cardiac fate, resulting in the generation of populations consisting of >60% cardiomyocytes. Microarray analyses reveal that this respecification is mediated in part through the coordinated regulation of the BMP and Wnt pathways by Notch signaling. Together, these findings have uncovered a potential role for the Notch pathway in cardiac development and provide an approach for generating large numbers of cardiac progenitors from ES cells.
Stem Cells | 2009
Paul Gadue; Valerie Gouon-Evans; Xin Cheng; Ewa Wandzioch; Kenneth S. Zaret; Markus Grompe; Philip R. Streeter; Gordon Keller
The development of functional cell populations such as hepatocytes and pancreatic β cells from embryonic stem cell (ESC) is dependent on the efficient induction of definitive endoderm early in the differentiation process. To monitor definitive endoderm formation in mouse ESC differentiation cultures in a quantitative fashion, we generated a reporter cell line that expresses human CD25 from the Foxa3 locus and human CD4 from the Foxa2 locus. Induction of these reporter ESCs with high concentrations of activin A led to the development of a CD25‐Foxa3+CD4‐Foxa2+ population within 4‐5 days of culture. Isolation and characterization of this population showed that it consists predominantly of definitive endoderm that is able to undergo hepatic specification under the appropriate conditions. To develop reagents that can be used for studies on endoderm development from unmanipulated ESCs, from induced pluripotent stem cells, and from the mouse embryo, we generated monoclonal antibodies against the CD25‐Foxa3+CD4‐Foxa2+ population. With this approach, we identified two antibodies that react specifically with endoderm from ESC cultures and from the early embryo. The specificity of these antibodies enables one to quantitatively monitor endoderm development in ESC differentiation cultures, to study endoderm formation in the embryo, and to isolate pure populations of culture‐ or embryo‐derived endodermal cells. STEM CELLS 2009;27:2103–2113
Cell Research | 2016
Xiaolei Shi; Yimeng Gao; Yupeng Yan; Hu-Cheng Ma; Lulu Sun; Pengyu Huang; Xuan Ni; Ludi Zhang; Xin Zhao; Haozhen Ren; Dan Hu; Yan Zhou; Feng Tian; Yuan Ji; Xin Cheng; Guoyu Pan; Yitao Ding; Lijian Hui
Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system.
Stem Cell Research | 2014
Prasuna Paluru; Kristin M. Hudock; Xin Cheng; Jason A. Mills; Lei Ying; Aline M. Galvão; Lin Lu; Amita Tiyaboonchai; Xiuli Sim; Spencer K. Sullivan; Deborah L. French; Paul Gadue
The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41+CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP). Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.
Stem Cell Research | 2011
Joel T. Outten; Xin Cheng; Paul Gadue; Deborah L. French; Scott L. Diamond
Serum-free differentiation protocols of human embryonic stem cells (hESCs) offer the ability to maximize reproducibility and to develop clinically applicable therapies. We developed a high-throughput, 96-well plate, four-color flow cytometry-based assay to optimize differentiation media cocktails and to screen a variety of conditions. We were able to differentiate hESCs to all three primary germ layers, screen for the effect of a range of activin A, BMP4, and VEGF concentrations on endoderm and mesoderm differentiation, and perform RNA-interference (RNAi)-mediated knockdown of a reporter gene during differentiation. Cells were seeded in suspension culture and embryoid bodies were induced to differentiate to the three primary germ layers for 6 days. Endoderm (CXCR4(+)KDR(-)), mesoderm (KDR(+)SSEA-3(-)), and ectoderm (SSEA-3(+)NCAM(+)) differentiation yields for H9 cells were 80 ± 11, 78 ± 7, and 41 ± 9%, respectively. Germ layer identities were confirmed by quantitative PCR. Activin A, BMP4, and bFGF drove differentiation, with increasing concentrations of activin A inducing higher endoderm yields and increasing BMP4 inducing higher mesoderm yields. VEGF drove lateral mesoderm differentiation. RNAi-mediated knockdown of constitutively expressed red fluorescent protein did not affect endoderm differentiation. This assay facilitates the development of serum-free protocols for hESC differentiation to target lineages and creates a platform for screening small molecules or RNAi during ESC differentiation.
Current Opinion in Cell Biology | 2013
Xin Cheng; Amita Tiyaboonchai; Paul Gadue
The generation of functional endodermal lineages, such as hepatocytes and pancreatic endocrine cells, from pluripotent stem cells (PSCs) remains a challenge. One strategy to enhance the purity, yield and maturity of endodermal derivatives is to expand endoderm committed stem or progenitor cell populations derived from PSCs before final differentiation. Recent studies have shown that this is in fact a viable option both for expanding pure populations of endodermal cells as well as for generating more mature derivative tissues, as highlighted in the case of pancreatic beta cells.