Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xin Feng is active.

Publication


Featured researches published by Xin Feng.


PLOS ONE | 2012

A Method for Generation Phage Cocktail with Great Therapeutic Potential

Jingmin Gu; Xiaohe Liu; Yue Li; Wenyu Han; Liancheng Lei; Yongjun Yang; Honglei Zhao; Yu Gao; Jun Song; Rong Lu; Changjiang Sun; Xin Feng

Background Bacteriophage could be an alternative to conventional antibiotic therapy against multidrug-resistant bacteria. However, the emergence of resistant variants after phage treatment limited its therapeutic application. Methodology/Principal Findings In this study, an approach, named “Step-by-Step” (SBS), has been established. This method takes advantage of the occurrence of phage-resistant bacteria variants and ensures that phages lytic for wild-type strain and its phage-resistant variants are selected. A phage cocktail lytic for Klebsiella pneumoniae was established by the SBS method. This phage cocktail consisted of three phages (GH-K1, GH-K2 and GH-K3) which have different but overlapping host strains. Several phage-resistant variants of Klebsiella pneumoniae were isolated after different phages treatments. The virulence of these variants was much weaker [minimal lethal doses (MLD)>1.3×109 cfu/mouse] than that of wild-type K7 countpart (MLD = 2.5×103 cfu/mouse). Compared with any single phage, the phage cocktail significantly reduced the mutation frequency of Klebsiella pneumoniae and effectively rescued Klebsiella pneumoniae bacteremia in a murine K7 strain challenge model. The minimal protective dose (MPD) of the phage cocktail which was sufficient to protect bacteremic mice from lethal K7 infection was only 3.0×104 pfu, significantly smaller (p<0.01) than that of single monophage. Moreover, a delayed administration of this phage cocktail was still effective in protection against K7 challenge. Conclusions/Significance Our data showed that the phage cocktail was more effective in reducing bacterial mutation frequency and in the rescue of murine bacteremia than monophage suggesting that phage cocktail established by SBS method has great therapeutic potential for multidrug-resistant bacteria infection.


Journal of Virology | 2012

Complete Genome Sequence of Staphylococcus aureus Bacteriophage GH15

Jingmin Gu; Xiaohe Liu; Rong Lu; Yue Li; Jun Song; Liancheng Lei; Changjiang Sun; Xin Feng; Chongtao Du; Hao Yu; Yongjun Yang; Wenyu Han

ABSTRACT GH15 is a polyvalent phage that shows activity against a wide range of Staphylococcus aureus strains. In this work, the complete genome sequence of GH15 was determined. With a genome size of 139,806 bp (double-stranded DNA), GH15 is the largest staphylococcal phage sequenced to date. The complete genome encodes 214 open reading frames (ORFs) and 4 tRNAs. The closest relatives are the class III staphylococcal myobacteriophages, including K, A5W, ISP, Sb-1, and G1. Interestingly, although corresponding gene sequences demonstrate very high similarity, all the introns and inteins present in the phages listed above are absent in GH15. As such, GH15 can be considered phylogenetically unique among the staphylococcal myobacteriophages, indicating the diversity of this family.


PLOS Pathogens | 2014

Structural and Biochemical Characterization Reveals LysGH15 as an Unprecedented "EF-Hand-Like" Calcium-Binding Phage Lysin

Jingmin Gu; Yingang Feng; Xin Feng; Changjiang Sun; Liancheng Lei; Wei Ding; Fengfeng Niu; Lianying Jiao; Mei Yang; Yue Li; Xiaohe Liu; Jun Song; Ziyin Cui; Dong Han; Chongtao Du; Yongjun Yang; Songying Ouyang; Zhi-Jie Liu; Wenyu Han

The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an “EF-hand-like” calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR) spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408) in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.


Bioengineered bugs | 2011

LysGH15 reduces the inflammation caused by lethal methicillin-resistant Staphylococcus aureus infection in mice

Jingmin Gu; Jing Zuo; Liancheng Lei; Honglei Zhao; Changjiang Sun; Xin Feng; Chongtao Du; Xinwei Li; Yong-Jun Yang; Wenyu Han

The endolysin LysGH15, derived from staphylococcal phage GH15, has a wide lytic spectrum and strong lytic activity against Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), in vitro and in vivo. Here, the ability of lethal MRSA to induce mRNA levels of interleukin-6 (IL-6), interleukin-4 (IL-4), and interferon-γ (IFN-γ) in spleen tissues of mice was studied. A large number of bacteria were detected in spleens. The bacteria caused elevated expression levels of these three cytokines. Administration of LysGH15 significantly reduced the number of bacteria and the levels of IL-6, IL-4, and IFN-γ mRNA in spleen cells compared with those in untreated mice at 24 h (P < 0.05). LysGH15 can eliminate a large number of bacteria and effectively alleviate inflammation induced by infection with lethal MRSA.


Scientific Reports | 2016

LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation

Lei Zhang; Dong Li; Xinwei Li; Liyuan Hu; Mengjun Cheng; Feifei Xia; Pengjuan Gong; Bin Wang; Jinli Ge; Hao Zhang; Ruopeng Cai; Yanmei Wang; Changjiang Sun; Xin Feng; Liancheng Lei; Wenyu Han; Jingmin Gu

The lysin LysGH15, derived from the staphylococcal phage GH15, exhibits a wide lytic spectrum and highly efficient lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we found that LysGH15 did not induce resistance in MRSA or methicillin-sensitive S. aureus (MSSA) strains after repeated treatment. Although LysGH15 triggered the generation of LysGH15-specific antibodies in mice, these antibodies did not block lytic activity in vitro (nor the binding capacity of LysGH15). More importantly, when the antibody titre was highest in mice immunized with LysGH15, a single intravenous injection of LysGH15 was sufficient to protect mice against lethal infection with MRSA. These results indicated that LysGH15-specific antibodies did not affect the killing efficiency of LysGH15 against MRSA in vitro or in vivo. LysGH15 also reduced pro-inflammatory cytokines in mice with lethal infections. Furthermore, a high-dose LysGH15 injection did not cause significant adverse effects or pathological changes in the main organs of treated animals. These results provide further evidence for the administration of LysGH15 as an alternative strategy for the treatment of infections caused by MRSA.


Clinical and Vaccine Immunology | 2014

Specific humoral immune response induced by Propionibacterium acnes can prevent Actinobacillus pleuropneumoniae infection in mice

Feng Yang; Qiuyue Ma; Liancheng Lei; Jing Huang; Qun Ji; Ruidong Zhai; Lei Wang; Yu Wang; Linxi Li; Changjiang Sun; Xin Feng; Wenyu Han

ABSTRACT Porcine contagious pleuropneumonia, caused by Actinobacillus pleuropneumoniae, has a major impact on economics, ecology, and animal welfare in the pig-rearing industry. Propionibacterium acnes, a facultative anaerobic Gram-positive corynebacterium, exists widely in normal healthy adult animals. We have shown previously that P. acnes can prevent A. pleuropneumoniae infections in mice and pigs. To elucidate the mechanism of this effect and to identify novel A. pleuropneumoniae vaccines, the role of anti-P. acnes antibodies in preventing infection was analyzed by indirect immunofluorescence and opsonophagocytosis assays in vitro. The role of the specific humoral immune response induced by P. acnes was confirmed in a B cell depletion mouse model. The survival rates of mice challenged with A. pleuropneumoniae exhibited a highly significant positive rank correlation with the levels of anti-P. acnes antibodies. The specific antibodies induced by P. acnes had the ability to combine with A. pleuropneumoniae and increase opsonization of A. pleuropneumoniae for phagocytosis. Furthermore, analysis in the murine B cell depletion model confirmed that the humoral immune response induced by P. acnes played an important role in resistance to A. pleuropneumoniae infection. In this study, we further elucidated the reasons that P. acnes can prevent A. pleuropneumoniae infection, which provides useful evidence for the development of heterologous vaccines for the control of porcine contagious pleuropneumonia.


Journal of Basic Microbiology | 2012

Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence

Longwen Xiao; Liang Zhou; Changjiang Sun; Xin Feng; Chongtao Du; Yu Gao; Qun Ji; Shuxin Yang; Yu Wang; Wenyu Han; Paul R. Langford; Liancheng Lei

Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C‐terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1‐like or HsfBD2‐like binding domains. Western blot analysis revealed that the 126 C‐terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli‐ ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme‐linked immunosorbent assays demonstrated that ApaBD3 mediated high‐level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli‐ ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C‐terminal translocator domain. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Applied and Environmental Microbiology | 2016

Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus

Feifei Xia; Xin Li; Bin Wang; Pengjuan Gong; Feng Xiao; Mei Yang; Lei Zhang; Jun Song; Liyuan Hu; Mengjun Cheng; Changjiang Sun; Xin Feng; Liancheng Lei; Songying Ouyang; Zhi-Jie Liu; Xinwei Li; Jingmin Gu; Wenyu Han

ABSTRACT Pneumonia is one of the most prevalent Staphylococcus aureus-mediated diseases, and the treatment of this infection is becoming challenging due to the emergence of multidrug-resistant S. aureus, especially methicillin-resistant S. aureus (MRSA) strains. It has been reported that LysGH15, the lysin derived from phage GH15, displays high efficiency and a broad lytic spectrum against MRSA and that apigenin can markedly diminish the alpha-hemolysin of S. aureus. In this study, the combination therapy of LysGH15 and apigenin was evaluated in vitro and in a mouse S. aureus pneumonia model. No mutual adverse influence was detected between LysGH15 and apigenin in vitro. In animal experiments, the combination therapy showed a more effective treatment effect than LysGH15 or apigenin monotherapy (P < 0.05). The bacterial load in the lungs of mice administered the combination therapy was 1.5 log units within 24 h after challenge, whereas the loads in unprotected mice or mice treated with apigenin or LysGH15 alone were 10.2, 4.7, and 2.6 log units, respectively. The combination therapy group showed the best health status, the lowest ratio of wet tissue to dry tissue of the lungs, the smallest amount of total protein and cells in the lung, the fewest pathological manifestations, and the lowest cytokine level compared with the other groups (P < 0.05). With regard to its better protective efficacy, the combination therapy of LysGH15 and apigenin exhibits therapeutic potential for treating pneumonia caused by MRSA. This paper reports the combination therapy of lysin and natural products derived from traditional Chinese medicine.


Veterinary Microbiology | 2015

The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity

Lei Wang; Wanhai Qin; Shuxin Yang; Ruidong Zhai; Liang Zhou; Changjiang Sun; Fengguang Pan; Qun Ji; Yu Wang; Jingmin Gu; Xin Feng; Chongtao Du; Wenyu Han; Paul R. Langford; Liancheng Lei

Actinobacillus pleuropneumoniae is a causative agent of porcine pleuropneumonia, which is a highly contagious endemic disease of pigs. Adhesion is a critical first step in the infection process. Trimeric autotransporter adhesions (TAAs) have been identified as novel virulence factors; however, little is known on their roles in A. pleuropneumoniae pathogenicity. Here, our data show that YadA-like head region (Adh) of Apa1 was the optimal adhesion functional domain via segment expression and adhesion assays in vitro. Additionally, Adh induced partial protection against A. pleuropneumoniae 5b L20 and serotypes 1, 3, and 5a in mice. The deletion of Adh gene significantly decreased autoaggregation, biofilm formation and adherence to host cells in vitro. Furthermore, with delaying of clinical symptoms, reducing production of pro-inflammatory cytokines and lessening the lung injury after infection, Adh deletion strain (5bϕAdh) significantly reduced the pathogenicity to piglets. To elucidate the mechanism of lung injury, the differentially expressed genes in the lung tissues of piglets infected with the 5b L20 or 5bϕAdh strains were investigated using microarray analysis and validated by qRT-PCR. Compared with the 5b L20 infected piglets, 495 genes were differentially expressed in 5bϕAdh infected lung tissue (221 upregulated and 274 downregulated). Especially, the antigen processing and presentation gene IFI30 was increased following infection with the 5bϕAdh strain. Thus, Adh may enhance pathogenicity by depressing host immune recognition. We conclude that the head domain of the A. pleuropneumoniae trimeric autotransporter Apa1 regulates autoagglutination, biofilm formation, adhesion to host cells and pathogenicity.


Tuberculosis | 2011

Subtractive screening with the Mycobacterium tuberculosis surface protein phage display library

Shanshan Liu; Wenyu Han; Changjiang Sun; Liancheng Lei; Xin Feng; Shouqing Yan; Yuwen Diao; Yu Gao; Honglei Zhao; Qianhong Liu; Cuimei Yao; Minsi Li

Surface proteins consist of secreted and membrane proteins and play a central role in the interaction of the pathogen with its environment, especially in the pathogenicity of Mycobacterium tuberculosis (MTB). Research on surface proteins in MTB has focused on 2D electrophoresis of culture filtrate proteins (CFP), extraction of transmembrane proteins with detergent and predicting their properties with a range of available algorithms. However, functional analysis of these secretomes is possible only if many proteins are expressed and purified individually, which limits a large number of studies to the function of the proteome. Here, we utilized a phage display system to construct a whole genomic surface protein phage display library of MTB, which can complete direct selection, identification, expression, purification and functional research of surface proteins of MTB. With this system we made a new serological approach involving iterative subtraction screening. Cross-reactivity of antibodies was reduced by preadsorption of the surface protein phage display library with the sera of healthy BCG-vaccinated individuals prior to studying their reactivity against the sera of tuberculosis (TB) patients. As a result six antigens were identified, three of which have not previously been reported as diagnosis antigens. The surface protein phage display library shows great promise in the study of MTB.

Collaboration


Dive into the Xin Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge