Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinfeng Gao is active.

Publication


Featured researches published by Xinfeng Gao.


Journal of the American Chemical Society | 2010

Low-Coordinate and Neutral Nitrido Complexes of Vanadium

Ba L. Tran; Maren Pink; Xinfeng Gao; Hyunsoo Park; Daniel J. Mindiola

Two neutral and four-coordinate vanadium(V)-nitrido complexes have been prepared via the thermolysis of metastable vanadium(III)-azido precursors. All complexes have been fully characterized by multinuclear NMR, FT-IR, isotopic labeling, and, in most instances, single crystal X-ray diffraction. On the basis of activation parameters, N(2) extrusion to form the V[triple bond]N moiety is proposed to occur via an ordered and early transition state having three- or four-triazametallacycle frameworks. In addition, we demonstrate the nitrido ligand to undergo incomplete N-atom transfer to CO and CN{2,6-Me(2)-C(6)H(3)) to form the bent V-N=C=X (X = O, N{2,6-Me(2)-C(6)H(3)}) ligands with concomitant 2e(-) reduction at the vanadium center.


Journal of the American Chemical Society | 2010

Mechanism of Heterolysis of H2 by an Unsaturated d8 Nickel Center: via Tetravalent Nickel?

Tao He; Nikolay P. Tsvetkov; José G. Andino; Xinfeng Gao; Benjamin C. Fullmer; Kenneth G. Caulton

Collision of H(2) with the unusual nickel complex, (PNP)Ni(+), where PNP = ((t)Bu(2)PCH(2)SiMe(2))(2)N, forms a rare dihydrogen complex of the d(8) configuration which then rearranges to heterolytically cleave the H-H bond. Experimental studies support a short H/H distance in the coordinated diatomic, and DFT calculations show that the transition state for heterolysis, in spite of the fact that this involves an amide nitrogen located trans to the H(2), has the H/H bond fully split, and has all the geometric features of Ni(IV), but this is a local maximum, not a minimum.


Journal of the American Chemical Society | 2010

Phosphinidene Complexes of Scandium: Powerful PAr Group-Transfer Vehicles to Organic and Inorganic Substrates

Benjamin F. Wicker; Jennifer Scott; José G. Andino; Xinfeng Gao; Hyunsoo Park; Maren Pink; Daniel J. Mindiola

The first phosphinidene complexes of scandium are reported in this contribution. When complex (PNP)Sc(CH(3))Br (1) is treated with 1 equiv of LiPH[Trip] (Trip = 2,4,6-(i)Pr(3)C(6)H(2)), the dinuclear scandium phosphinidene complex [(PNP)Sc(mu(2)-P[Trip])](2) (2) is obtained. However, treating 1 with a bulkier primary phosphide produces the mononuclear scandium ate complex [(PNP)Sc(mu(2)-P[DMP])(mu(2)-Br)Li] (3) (DMP = 2,6-Mes(2)C(6)H(3)). The Li cation in 3 can be partially encapsulated with DME to furnish a phosphinidene salt derivative, (PNP)Sc(mu(2)-P[DMP])(mu(2)-Br)Li(DME)] (4). We also demonstrate that complex 3 can readily deliver the phosphinidene ligand to organic substrates such as OCPh(2) and Cl(2)PMes* as well as inorganic fragments such as Cp(2)ZrCl(2), Cp*(2)TiCl(2), and Cp(2)TiCl(2) in the presence of P(CH(3))(3). Complexes 2-4 have been fully characterized, including single crystal X-ray diffraction and DFT studies.


Journal of the American Chemical Society | 2013

Room Temperature Dehydrogenation of Ethane, Propane, Linear Alkanes C4–C8, and Some Cyclic Alkanes by Titanium–Carbon Multiple Bonds

Marco G. Crestani; Anne Hickey; Xinfeng Gao; Balazs Pinter; Vincent N. Cavaliere; Jun-ichi Ito; Chun-Hsing Chen; Daniel J. Mindiola

The transient titanium neopentylidyne, [(PNP)Ti≡C(t)Bu] (A; PNP(-)≡N[2-P(i)Pr2-4-methylphenyl]2(-)), dehydrogenates ethane to ethylene at room temperature over 24 h, by sequential 1,2-CH bond addition and β-hydrogen abstraction to afford [(PNP)Ti(η(2)-H2C═CH2)(CH2(t)Bu)] (1). Intermediate A can also dehydrogenate propane to propene, albeit not cleanly, as well as linear and volatile alkanes C4-C6 to form isolable α-olefin complexes of the type, [(PNP)Ti(η(2)-H2C═CHR)(CH2(t)Bu)] (R = CH3 (2), CH2CH3 (3), (n)Pr (4), and (n)Bu (5)). Complexes 1-5 can be independently prepared from [(PNP)Ti═CH(t)Bu(OTf)] and the corresponding alkylating reagents, LiCH2CHR (R = H, CH3(unstable), CH2CH3, (n)Pr, and (n)Bu). Olefin complexes 1 and 3-5 have all been characterized by a diverse array of multinuclear NMR spectroscopic experiments including (1)H-(31)P HOESY, and in the case of the α-olefin adducts 2-5, formation of mixtures of two diastereomers (each with their corresponding pair of enantiomers) has been unequivocally established. The latter has been spectroscopically elucidated by NMR via C-H coupled and decoupled (1)H-(13)C multiplicity edited gHSQC, (1)H-(31)P HMBC, and dqfCOSY experiments. Heavier linear alkanes (C7 and C8) are also dehydrogenated by A to form [(PNP)Ti(η(2)-H2C═CH(n)Pentyl)(CH2(t)Bu)] (6) and [(PNP)Ti(η(2)-H2C═CH(n)Hexyl)(CH2(t)Bu)] (7), respectively, but these species are unstable but can exchange with ethylene (1 atm) to form 1 and the free α-olefin. Complex 1 exchanges with D2C═CD2 with concomitant release of H2C═CH2. In addition, deuterium incorporation is observed in the neopentyl ligand as a result of this process. Cyclohexane and methylcyclohexane can be also dehydrogenated by transient A, and in the case of cyclohexane, ethylene (1 atm) can trap the [(PNP)Ti(CH2(t)Bu)] fragment to form 1. Dehydrogenation of the alkane is not rate-determining since pentane and pentane-d12 can be dehydrogenated to 4 and 4-d12 with comparable rates (KIE = 1.1(0) at ~29 °C). Computational studies have been applied to understand the formation and bonding pattern of the olefin complexes. Steric repulsion was shown to play an important role in determining the relative stability of several olefin adducts and their conformers. The olefin in 1 can be liberated by use of N2O, organic azides (N3R; R = 1-adamantyl or SiMe3), ketones (O═CPh2; 2 equiv) and the diazoalkane, N2CHtolyl2. For complexes 3-7, oxidation with N2O also liberates the α-olefin.


Angewandte Chemie | 2009

Tellus in, Tellus out: The Chemistry of the Vanadium Bis(telluride) Functionality

Uriah J. Kilgore; Jonathan A. Karty; Maren Pink; Xinfeng Gao; Daniel J. Mindiola

The vanadium-bis(telluride) complex, [(PNP)V(Te)(2)] (see picture), in which the terminal telluride units can act as leaving groups or protecting groups, is prepared by activation of elemental Te by V. The complex masks {(PNP)V(I)} or {(PNP)V(III)} sources when exposed to oxidants such as azides and diphenyldiazomethane. Isocyanides promote elimination of one Te ligand to furnish a V(III) complex with a terminal telluride ligand.


Inorganic Chemistry | 2015

Addition of Si–H and B–H Bonds and Redox Reactivity Involving Low-Coordinate Nitrido–Vanadium Complexes

Rick Thompson; Ba L. Tran; Soumya Ghosh; Chun Hsing Chen; Maren Pink; Xinfeng Gao; Patrick J. Carroll; Mu-Hyun Baik; Daniel J. Mindiola

In this study we enumerate the reactivity for two molecular vanadium nitrido complexes of [(nacnac)V≡N(X)] formulation [nacnac = (Ar)NC(Me)CHC(Me)(Ar)(-), Ar = 2,6-(CHMe2)2C6H3); X(-) = OAr (1) and N(4-Me-C6H4)2 (Ntolyl2) (2)]. Density functional theory calculations and reactivity studies indicate the nitride motif to have nucleophilic character, but where the nitrogen atom can serve as a conduit for electron transfer, thus allowing the reduction of the vanadium(V) metal ion with concurrent oxidation of the incoming substrate. Silane, H2SiPh2, readily converts the nitride ligand in 1 into a primary silyl-amide functionality with concomitant two-electron reduction at the vanadium center to form the complex [(nacnac)V{N(H)SiHPh2}(OAr)] (3). Likewise, addition of the B-H bond in pinacolborane to the nitride moiety in 2 results in formation of the boryl-amide complex [(nacnac)V{N(H)B(pinacol)}(Ntolyl2)] (4). In addition to spectroscopic data, complexes 3 and 4 were also elucidated structurally by single-crystal X-ray diffraction analysis. One-electron reduction of 1 with 0.5% Na/Hg on a preparative scale allowed for the isolation and structural determination of an asymmetric bimolecular nitride radical anion complex having formula [Na]2[(nacnac)V(N)(OAr)]2 (5), in addition to room-temperature solution X-band electron paramagnetic resonance spectroscopic studies.


Chemical Science | 2013

Understanding the competitive dehydroalkoxylation and dehydrogenation of ethers with Ti–C multiple bonds

Marco G. Crestani; András Olasz; Balazs Pinter; Brad C. Bailey; Skye Fortier; Xinfeng Gao; Chun Hsing Chen; Mu-Hyun Baik; Daniel J. Mindiola

The divergent reactivity of a transient titanium neopentylidyne, (PNP)TiCtBu (A) (PNP = N[2-PiPr2-4-methylphenyl]2−), that exhibits competing dehydrogenation and dehydroalkoxylation reaction pathways in the presence of acyclic ethers (Et2O, nPr2O, nBu2O, tBuOMe, tBuOEt, iPr2O) is presented. Although dehydrogenation takes place also in long-chain linear ethers, dehydroalkoxylation is disfavoured and takes place preferentially or even exclusively in the case of branched ethers. In all cases, dehydrogenation occurs at the terminal position of the aliphatic chain. Kinetics analyses performed using the alkylidene-alkyl precursor, (PNP)TiCHtBu(CH2tBu), show pseudo first-order decay rates on titanium (kavg = 6.2 ± 0.3 × 10−5 s−1, at 29.5 ± 0.1 °C, overall), regardless of the substrate or reaction pathway that ensues. Also, no significant kinetic isotope effect (kH/kD ∼ 1.1) was found between the activations of Et2O and Et2O-d10, in accord with dehydrogenation (C–H activation and abstraction) not being the slowest steps, but also consistent with formation of the transient alkylidyne A being rate-determining. An overall decay rate of (PNP)TiCHtBu(CH2tBu) with a t1/2 = 3.2 ± 0.4 h, across all ethers, confirms formation of A being a common intermediate. Isolated alkylidene-alkoxides, (PNP)TiCHtBu(OR) (R = Me, Et, nPr, nBu, iPr, tBu) formed from dehydroalkoxylation reactions were also independently prepared by salt metatheses, and extensive NMR characterization of these products is provided. Finally, combining theory and experiment we discuss how each reaction pathway can be altered and how the binding event of ethers plays a critical role in the outcome of the reaction.


Journal of the American Chemical Society | 2017

Cyanide Ligand Assembly by Carbon Atom Transfer to an Iron Nitride

Jorge L. Martinez; Hsiu-Jung Lin; Wei-Tsung Lee; Maren Pink; Chun-Hsing Chen; Xinfeng Gao; Diane A. Dickie; Jeremy M. Smith

The new iron(IV) nitride complex PhB(iPr2Im)3Fe≡N reacts with 2 equiv of bis(diisopropylamino)cyclopropenylidene (BAC) to provide PhB(iPr2Im)3Fe(CN)(N2)(BAC). This unusual example of a four-electron reaction involves carbon atom transfer from BAC to create a cyanide ligand along with the alkyne iPr2N-C≡C-NiPr2. The iron complex is in equilibrium with an N2-free species. Further reaction with CO leads to formation of a CO analogue, which can be independently prepared using NaCN as the cyanide source, while reaction with B(C6F5)3 provides the cyanoborane derivative.


Journal of Physical Chemistry Letters | 2015

Basal Plane Fluorination of Graphene by XeF2 via a Radical Cation Mechanism

Yijun Liu; Benjamin W. Noffke; Xiaoxiao Qiao; Qiqi Li; Xinfeng Gao; Krishnan Raghavachari; Liang-shi Li

Graphene fluorination with XeF2 is an attractive method to introduce a nonzero bandgap to graphene under mild conditions for potential electro-optical applications. Herein, we use well-defined graphene nanostructures as a model system to study the reaction mechanism of graphene fluorination by XeF2. Our combined experimental and theoretical studies show that the reaction can proceed through a radical cation mechanism, leading to fluorination and sp(3)-hybridized carbon in the basal plane.


Journal of Physical Chemistry C | 2008

Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer

Eleonora V. Shtykova; Xinlei Huang; Xinfeng Gao; Jason C. Dyke; Abrin L. Schmucker; Bogdan Dragnea; Nicholas Remmes; David V. Baxter; Barry E. Stein; Peter V. Konarev; Dmitri I. Svergun; Lyudmila M. Bronstein

Collaboration


Dive into the Xinfeng Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maren Pink

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Marco G. Crestani

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun Hsing Chen

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Hickey

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Balazs Pinter

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge