Xingfeng Wang
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xingfeng Wang.
Nano Letters | 2014
Vadivukarasi Raju; Jordan Rains; Cooper Gates; Wei Luo; Xingfeng Wang; William F. Stickle; Galen D. Stucky; Xiulei Ji
For the first time, we demonstrate that orthorhombic V2O5 can exhibit superior electrochemical performance in sodium ion batteries when uniformly coated inside nanoporous carbon. The encapsulated V2O5 shows a specific capacity as high as 276 mAh/g, while the whole nanocomposite exhibits a capacity of 170 mAh/g. The V2O5/C composite was fabricated by a novel ambient hydrolysis deposition that features sequential water vapor adsorption in nanoporous carbon, followed by a hydrolysis reaction, exclusively inside the nanopores. The unique structure of the nanocomposite significantly enhances the capacity as well as the rate performance of orthorhombic V2O5 where the composite retains a capacity of over 90 mAh/g at a current rate of 640 mA/g. Furthermore, by calculating, we also revealed that a large portion of the sodium-ion storage, particularly at high current rates, is due to the V2O5 pseudocapacitance.
Nature Communications | 2015
Sang-Eun Chun; Brian Evanko; Xingfeng Wang; David Vonlanthen; Xiulei Ji; Galen D. Stucky; Shannon W. Boettcher
Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg−1 based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30–50 Wh kg−1 is possible with optimization.
Scientific Reports | 2013
Wei Luo; Xingfeng Wang; Colin Meyers; Nick Wannenmacher; Weekit Sirisaksoontorn; Michael M. Lerner; Xiulei Ji
Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials.
ACS Applied Materials & Interfaces | 2015
Xingfeng Wang; Raghu Subash Chandrabose; Sang-Eun Chun; Tianqi Zhang; Brian Evanko; Zelang Jian; Shannon W. Boettcher; Galen D. Stucky; Xiulei Ji
We report a new electrochemical capacitor with an aqueous KI-KOH electrolyte that exhibits a higher specific energy and power than the state-of-the-art nonaqueous electrochemical capacitors. In addition to electrical double layer capacitance, redox reactions in this device contribute to charge storage at both positive and negative electrodes via a catholyte of IOx-/I- couple and a redox couple of H2O/Had, respectively. Here, we, for the first time, report utilizing IOx-/I- redox couple for the positive electrode, which pins the positive electrode potential to be 0.4-0.5 V vs Ag/AgCl. With the positive electrode potential pinned, we can polarize the cell to 1.6 V without breaking down the aqueous electrolyte so that the negative electrode potential could reach -1.1 V vs Ag/AgCl in the basic electrolyte, greatly enhancing energy storage. Both mass spectroscopy and Raman spectrometry confirm the formation of IO3- ions (+5) from I- (-1) after charging. Based on the total mass of electrodes and electrolyte in a practically relevant cell configuration, the device exhibits a maximum specific energy of 7.1 Wh/kg, operates between -20 and 50 °C, provides a maximum specific power of 6222 W/kg, and has a stable cycling life with 93% retention of the peak specific energy after 14,000 cycles.
Chemistry: A European Journal | 2014
Vadivukarasi Raju; Xingfeng Wang; Wei Luo; Xiulei Ji
A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An SnO2/C composite with an intermediate SnO2 loading exhibited an initial specific delithiation capacity of 1054 mAh g(-1) as an anode for Li-ion batteries. The capacity contribution from SnO2 in the composite electrode approaches the theoretical capacity of SnO2 (1494 mAh g(-1)) if both Sn alloying and SnO2 conversion reactions are considered to be reversible. The composite shows a specific capacity of 573 mAh g(-1) after 300 cycles, that is, one of the most stable cycling performances for SnO2/mesoporous carbon composites. The results demonstrated the importance of well-tuned empty space in nanostructured composites to accommodate expansion of the electrode active mass during alloying/dealloying and conversion reactions.
Journal of Materials Chemistry | 2014
Xingfeng Wang; Vadivukarasi Raju; Wei Luo; Bao Wang; William F. Stickle; Xiulei Ji
Despite the considerable advances of deposition technologies, formation of conformal deposition on the surface of nanoporous carbons remains a significant challenge. Here, we introduce a new ambient hydrolysis deposition method that employs and controls pre-adsorbed water vapor on nanoporous carbons to define the deposition of TiO2. We converted the deposited TiO2 into TiN via a nitridation process. The metallic-TiN-coated porous carbon exhibits superior kinetic performance as an electrode in electrical double layer capacitors. The novel deposition method provides a general solution for surface engineering on nanostructured carbons, which may result in a strong impact on the fields of energy storage and other disciplines.
Angewandte Chemie | 2017
Xingfeng Wang; Clement Bommier; Zelang Jian; Zhifei Li; Raghu Subash Chandrabose; Ismael A. Rodríguez-Pérez; P. Alex Greaney; Xiulei Ji
We demonstrate for the first time that hydronium ions can be reversibly stored in an electrode of crystalline 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). PTCDA exhibits a capacity of 85 mAh g-1 at 1 A g-1 after an initial conditioning process. Ex situ X-ray diffraction revealed reversible and significant structure dilation upon reduction of PTCDA in an acidic electrolyte, which can only be ascribed to hydronium-ion intercalation. The lattice expansion upon hydronium storage was theoretically explored by first-principles density functional theory (DFT) calculations, which confirmed the hydronium storage in PTCDA.
Journal of the American Chemical Society | 2017
Seung Joon Yoo; Brian Evanko; Xingfeng Wang; Monica Romelczyk; Aidan Taylor; Xiulei Ji; Shannon W. Boettcher; Galen D. Stucky
Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br2/Br3-. This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.
Journal of the American Chemical Society | 2017
Ismael A. Rodríguez-Pérez; Yifei Yuan; Clement Bommier; Xingfeng Wang; Lu Ma; Daniel P. Leonard; Michael M. Lerner; Rich G. Carter; Tianpin Wu; P. Alex Greaney; Jun Lu; Xiulei Ji
We report that crystalline 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), an organic solid, is highly amenable to host divalent metal ions, i.e., Mg2+ and Ca2+, in aqueous electrolytes, where the van der Waals structure is intrinsically superior in hosting charge-dense ions. We observe that the divalent nature of Mg2+ causes unique squeezing deformation of the electrode structure, where it contracts and expands in different crystallographic directions when hosting the inserted Mg-ions. This phenomenon is revealed experimentally by ex situ X-ray diffraction and transmission electron microscopy, and is investigated theoretically by first-principles calculations. Interestingly, hosting one Mg2+ ion requires the coordination from three PTCDA molecules in adjacent columns of stacked molecules, which rotates the columns, thus reducing the (011) spacing but increasing the (021) spacing. We demonstrate that a PTCDA Mg-ion electrode delivers a reversible capacity of 125 mA h g-1, which may include a minor contribution of hydronium storage, a good rate capability by retaining 75 mA h g-1 at 500 mA g-1 (or 3.7 C), and a stable cycle life. We also report Ca2+ storage in PTCDA, where a reversible capacity of over 80 mA h g-1 is delivered.
Advanced Functional Materials | 2017
Zelang Jian; Sooyeon Hwang; Zhifei Li; Alexandre S. Hernandez; Xingfeng Wang; Zhenyu Xing; Dong Su; Xiulei Ji