Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xingzhi Song is active.

Publication


Featured researches published by Xingzhi Song.


Science | 2014

Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing

Jianjun Zhang; Junya Fujimoto; Jianhua Zhang; David C. Wedge; Xingzhi Song; Jiexin Zhang; Sahil Seth; Chi Wan Chow; Yu Cao; Curtis Gumbs; Kathryn A. Gold; Neda Kalhor; Latasha Little; Harshad S. Mahadeshwar; Cesar A. Moran; Alexei Protopopov; Huandong Sun; Jiabin Tang; Xifeng Wu; Yuanqing Ye; William N. William; J. Jack Lee; John V. Heymach; Waun Ki Hong; Stephen G. Swisher; Ignacio I. Wistuba; Andrew Futreal

Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multiregion whole-exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20 out of 21 known cancer gene mutations were identified in all regions of individual tumors, which suggested that single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months after surgery, three patients have relapsed, and all three patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate that a larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. Different mutations are present in different regions of any given lung cancer, and their pattern may predict patient relapse. [Also see Perspective by Govindan] Space, time, and the lung cancer genome Lung cancer poses a formidable challenge to clinical oncologists. It is often detected at a late stage, and most therapies work for only a short time before the tumors resume their relentless growth. Two independent analyses of the human lung cancer genome may help explain why this disease is so resilient (see the Perspective by Govindan). Rather than take a single “snapshot” of the cancer genome, de Bruin et al. and Zhang et al. identified genomic alterations in spatially distinct regions of single lung tumors and used this information to infer the tumors evolutionary history. Each tumor showed tremendous spatial and temporal diversity in its mutational profiles. Thus, the efficacy of drugs may be short-lived because they destroy only a portion of the tumor. Science, this issue p. 251, p. 256; see also p. 169


Proceedings of the National Academy of Sciences of the United States of America | 2014

Characterization of HPV and host genome interactions in primary head and neck cancers

Michael Parfenov; Chandra Sekhar Pedamallu; Nils Gehlenborg; Samuel S. Freeman; Ludmila Danilova; Christopher A. Bristow; Semin Lee; Angela Hadjipanayis; Elena Ivanova; Matthew D. Wilkerson; Alexei Protopopov; Lixing Yang; Sahil Seth; Xingzhi Song; Jiabin Tang; Xiaojia Ren; Jianhua Zhang; Angeliki Pantazi; Netty Santoso; Andrew W. Xu; Harshad S. Mahadeshwar; David A. Wheeler; Robert I. Haddad; Joonil Jung; Akinyemi I. Ojesina; Natalia Issaeva; Wendell G. Yarbrough; D. Neil Hayes; Jennifer R. Grandism; Adel K. El-Naggar

Significance A significant proportion of head and neck cancer is driven by human papillomavirus (HPV) infection, and the expression of viral oncogenes is involved in the development of these tumors. However, the role of HPV integration in primary tumors beyond increasing the expression of viral oncoproteins is not understood. Here, we describe how HPV integration impacts the host genome by amplification of oncogenes and disruption of tumor suppressors as well as driving inter- and intrachromosomal rearrangements. Tumors that do and do not have HPV integrants display distinct gene expression profiles and DNA methylation patterns, which further support the view that the mechanisms by which tumors with integrated and nonintegrated HPV arise are distinct. Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.


Nature Genetics | 2014

Recurrent PTPRB and PLCG1 mutations in angiosarcoma

Sam Behjati; Patrick Tarpey; Helen Sheldon; Inigo Martincorena; Peter Van Loo; Gunes Gundem; David C. Wedge; Manasa Ramakrishna; Susanna L. Cooke; Nischalan Pillay; Hans Kristian Moen Vollan; Elli Papaemmanuil; Hans Koss; Tom D. Bunney; Claire Hardy; Olivia Joseph; Sancha Martin; Laura Mudie; Adam Butler; Jon Teague; Meena Patil; Graham Steers; Yu Cao; Curtis Gumbs; Davis R. Ingram; Alexander J. Lazar; Latasha Little; Harshad S. Mahadeshwar; Alexei Protopopov; Ghadah A. Al Sannaa

Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.


Nature Genetics | 2017

Systematic analysis of telomere length and somatic alterations in 31 cancer types

Floris P. Barthel; Wei Wei; Ming Tang; Emmanuel Martinez-Ledesma; Xin Hu; Samirkumar Amin; Kadir C. Akdemir; Sahil Seth; Xingzhi Song; Qianghu Wang; Tara M. Lichtenberg; Jian Hu; Jianhua Zhang; Siyuan Zheng; Roel G.W. Verhaak

Cancer cells survive cellular crisis through telomere maintenance mechanisms. We report telomere lengths in 18,430 samples, including tumors and non-neoplastic samples, across 31 cancer types. Telomeres were shorter in tumors than in normal tissues and longer in sarcomas and gliomas than in other cancers. Among 6,835 cancers, 73% expressed telomerase reverse transcriptase (TERT), which was associated with TERT point mutations, rearrangements, DNA amplifications and transcript fusions and predictive of telomerase activity. TERT promoter methylation provided an additional deregulatory TERT expression mechanism. Five percent of cases, characterized by undetectable TERT expression and alterations in ATRX or DAXX, demonstrated elongated telomeres and increased telomeric repeat–containing RNA (TERRA). The remaining 22% of tumors neither expressed TERT nor harbored alterations in ATRX or DAXX. In this group, telomere length positively correlated with TP53 and RB1 mutations. Our analysis integrates TERT abnormalities, telomerase activity and genomic alterations with telomere length in cancer.


Journal of Clinical Investigation | 2015

Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma

Lawrence N. Kwong; Genevieve M. Boland; Dennie T. Frederick; Timothy L. Helms; Ahmad T. Akid; John P. Miller; Shan Jiang; Zachary A. Cooper; Xingzhi Song; Sahil Seth; Jennifer Kamara; Alexei Protopopov; Gordon B. Mills; Keith T. Flaherty; Jennifer A. Wargo; Lynda Chin

Multiple mechanisms have been described that confer BRAF inhibitor resistance to melanomas, yet the basis of this resistance remains undefined in a sizable portion of patient samples. Here, we characterized samples from a set of patients with melanoma that included individuals at baseline diagnosis, on BRAF inhibitor treatment, and with resistant tumors at both the protein and RNA levels. Using RNA and DNA sequencing, we identified known resistance-conferring mutations in 50% (6 of 12) of the resistant samples. In parallel, targeted proteomic analysis by protein array categorized the resistant samples into 3 stable groups, 2 of which were characterized by reactivation of MAPK signaling to different levels and 1 that was MAPK independent. The molecular relevance of these classifications identified in patients was supported by both mutation data and the similarity of resistance patterns that emerged during a co-clinical trial in a genetically engineered mouse (GEM) model of melanoma that recapitulates the development of BRAF inhibitor resistance. Additionally, we defined candidate biomarkers in pre- and early-treatment patient samples that have potential for predicting clinical responses. On the basis of these observations, we suggest that BRAF inhibitor-resistant melanomas can be actionably classified using protein expression patterns, even without identification of the underlying genetic alteration.


Nature Communications | 2016

Genomic heterogeneity of multiple synchronous lung cancer

Yu Liu; Jianjun Zhang; Lin Li; Guangliang Yin; Jianhua Zhang; Zheng S; Hannah Cheung; Ning Wu; Ning Lu; Xizeng Mao; Longhai Yang; Jiexin Zhang; Li Zhang; Sahil Seth; Huang Chen; Xingzhi Song; Kan Liu; Yong-Qiang Xie; Lina Zhou; Chuanduo Zhao; Naijun Han; Wenting Chen; Susu Zhang; Longyun Chen; Wenjun Cai; Miaozhong Shen; Ningzhi Xu; Shujun Cheng; Huanming Yang; J. Jack Lee

Multiple synchronous lung cancers (MSLCs) present a clinical dilemma as to whether individual tumours represent intrapulmonary metastases or independent tumours. In this study we analyse genomic profiles of 15 lung adenocarcinomas and one regional lymph node metastasis from 6 patients with MSLC. All 15 lung tumours demonstrate distinct genomic profiles, suggesting all are independent primary tumours, which are consistent with comprehensive histopathological assessment in 5 of the 6 patients. Lung tumours of the same individuals are no more similar to each other than are lung adenocarcinomas of different patients from TCGA cohort matched for tumour size and smoking status. Several known cancer-associated genes have different mutations in different tumours from the same patients. These findings suggest that in the context of identical constitutional genetic background and environmental exposure, different lung cancers in the same individual may have distinct genomic profiles and can be driven by distinct molecular events.


npj Genomic Medicine | 2017

Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma

Alexandre Reuben; Christine N. Spencer; Peter A. Prieto; Vancheswaran Gopalakrishnan; Sangeetha M. Reddy; John P. Miller; Xizeng Mao; Mariana Petaccia de Macedo; Jiong Chen; Xingzhi Song; Hong Jiang; Pei Ling Chen; Hannah C. Beird; Haven R. Garber; Whijae Roh; Khalida Wani; Eveline Chen; Cara Haymaker; Marie Andrée Forget; Latasha Little; Curtis Gumbs; Rebecca Thornton; Courtney W. Hudgens; Wei Shen Chen; Jacob Austin-Breneman; Robert Sloane; Luigi Nezi; Alexandria P. Cogdill; Chantale Bernatchez; Jason Roszik

Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune profiling, and revealed substantial genomic and immune heterogeneity in all patients studied, with considerable diversity in T cell frequency, and few shared T cell clones (<8% on average) across the cohort. Variables related to treatment response were identified via these approaches and through novel radiomic assessment. These data yield insight into differential therapeutic responses to targeted therapy and immune checkpoint blockade in melanoma, and have key translational implications in the age of precision medicine.Melanoma: Tumor differences within a patient may explain heterogeneous responsesPatients with metastatic melanoma display molecular and immune differences across tumor sites associated with differential drug responses. A team led by Jennifer Wargo from the University of Texas MD Anderson Cancer Center, Houston, USA, studied the radiological responses of 60 patients with metastatic melanoma, half of whom received targeted drug therapy and half of whom received an immune checkpoint inhibitor. The majority (83%) showed differences in responses across metastases. The group then profiled tumors in a subset, and found molecular and immune heterogeneity in different tumors within the same patient. Heterogeneity in mutational and immune profiles within tumors from individual patients could explain differences in treatment response. Knowing this, the authors emphasize the importance of acquiring biopsies from more than one tumor site in order to best tailor therapies to the features of metastatic cancer.


Genes & Development | 2017

Oncogenic Kras drives invasion and maintains metastases in colorectal cancer

Adam T. Boutin; Wen Ting Liao; Melody Wang; Soyoon Sarah Hwang; Tatiana Karpinets; Hannah Cheung; Gerald C. Chu; Shan Jiang; Jian Hu; Kyle Chang; Eduardo Vilar; Xingzhi Song; Jianhua Zhang; Scott Kopetz; Andrew Futreal; Y. Alan Wang; Lawrence N. Kwong; Ronald A. DePinho

Human colorectal cancer (CRC) is a major cause of cancer mortality and frequently harbors activating mutations in the KRAS gene. To understand the role of oncogenic KRAS in CRC, we engineered a mouse model of metastatic CRC that harbors an inducible oncogenic Kras allele (Krasmut ) and conditional null alleles of Apc and Trp53 (iKAP). The iKAP model recapitulates tumor progression from adenoma through metastases. Whole-exome sequencing revealed that the Krasmut allele was heterogenous in primary tumors yet homogenous in metastases, a pattern consistent with activated Krasmut signaling being a driver of progression to metastasis. System-level and functional analyses revealed the TGF-β pathway as a key mediator of Krasmut -driven invasiveness. Genetic extinction of Krasmut resulted in specific elimination of the Krasmut subpopulation in primary and metastatic tumors, leading to apoptotic elimination of advanced invasive and metastatic disease. This faithful CRC model provides genetic evidence that Krasmut drives CRC invasion and maintenance of metastases.


Oncotarget | 2017

DNA methylation intratumor heterogeneity in localized lung adenocarcinomas

Kelly Quek; Jun Li; Marcos R. Estecio; Jiexin Zhang; Junya Fujimoto; Emily Roarty; Latasha Little; Chi Wan Chow; Xingzhi Song; Carmen Behrens; Taiping Chen; William N. William; Stephen G. Swisher; John V. Heymach; Ignacio I. Wistuba; Jianhua Zhang; Andrew Futreal; Jianjun Zhang

Cancers are composed of cells with distinct molecular and phenotypic features within a given tumor, a phenomenon termed intratumor heterogeneity (ITH). Previously, we have demonstrated genomic ITH in localized lung adenocarcinomas; however, the nature of methylation ITH in lung cancers has not been well investigated. In this study, we generated methylation profiles of 48 spatially separated tumor regions from 11 localized lung adenocarcinomas and their matched normal lung tissues using Illumina Infinium Human Methylation 450K BeadChip array. We observed methylation ITH within the same tumors, but to a much less extent compared to inter-individual heterogeneity. On average, 25% of all differentially methylated probes compared to matched normal lung tissues were shared by all regions from the same tumors. This is in contrast to somatic mutations, of which approximately 77% were shared events amongst all regions of individual tumors, suggesting that while the majority of somatic mutations were early clonal events, the tumor-specific DNA methylation might be associated with later branched evolution of these 11 tumors. Furthermore, our data showed that a higher extent of DNA methylation ITH was associated with larger tumor size (average Euclidean distance of 35.64 (> 3cm, median size) versus 27.24 (<= 3cm), p = 0.014), advanced age (average Euclidean distance of 34.95 (above 65) verse 28.06 (below 65), p = 0.046) and increased risk of postsurgical recurrence (average Euclidean distance of 35.65 (relapsed patients) versus 29.03 (patients without relapsed), p = 0.039).


Blood | 2018

Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide

Koichi Takahashi; Boyu Hu; Feng Wang; Yuanqing Yan; Ekaterina Kim; Candida Vitale; Keyur P. Patel; Paolo Strati; Curtis Gumbs; Latasha Little; Samantha Tippen; Xingzhi Song; Jianhua Zhang; Nitin Jain; Philip A. Thompson; Guillermo Garcia-Manero; Hagop M. Kantarjian; Zeev Estrov; Kim-Anh Do; Michael J. Keating; Jan A. Burger; Alessandra Ferrajoli; P. Andrew Futreal; William G. Wierda

Lenalidomide is clinically active in chronic lymphocytic leukemia (CLL), but its effectiveness in the context of the CLL mutational landscape is unknown. We performed targeted capture sequencing of 295 cancer genes in specimens from 102 CLL patients with treatment-naïve disease (TN patients) and 186 CLL patients with relapsed/refractory disease (R/R patients) who received lenalidomide-based therapy at our institution. The most frequently mutated gene was SF3B1 (15%), followed by NOTCH1 (14%) and TP53 (14%), with R/R patients having significantly more TP53 mutations than did TN patients. Among all lenalidomide-treated patients, del(17p) (P ≤ .001), del(11q) (P = .032), and complex karyotype (P = .022), along with mutations in TP53 (P ≤ .001), KRAS (P = .034), and DDX3X (P ≤ .001), were associated with worse overall response (OR). R/R patients with SF3B1 and MGA mutations had significantly worse OR (P = .025 and .035, respectively). TN and R/R patients with del(17p) and TP53 mutations had worse overall survival (OS) and progression-free survival (PFS). In R/R patients, complex karyotype and SF3B1 mutations were associated with worse OS and PFS; DDX3X mutations were associated with worse PFS only. Weibull regression multivariate analysis revealed that TP53 aberrations (del(17p), TP53 mutation, or both), along with complex karyotype and SF3B1 mutations, were associated with worse OS in the R/R cohort. Taken together, cancer gene mutations in CLL contribute to the already comprehensive risk stratification and add to prognosis and response to treatment. The related trials were registered at www.clinicaltrials.gov as #NCT00267059, #NCT00535873, #NCT00759603, #NCT01446133, and #NCT01002755.

Collaboration


Dive into the Xingzhi Song's collaboration.

Top Co-Authors

Avatar

Jianhua Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Andrew Futreal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Curtis Gumbs

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Latasha Little

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sahil Seth

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jianjun Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xizeng Mao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ignacio I. Wistuba

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John V. Heymach

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alexei Protopopov

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge