Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinkun Wang is active.

Publication


Featured researches published by Xinkun Wang.


Frontiers in Aging Neuroscience | 2010

Selective Neuronal Vulnerability to Oxidative Stress in the Brain

Xinkun Wang; Elias K. Michaelis

Oxidative stress (OS), caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS), plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimers disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV) to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed.


Bioinformatics | 2006

An effective structure learning method for constructing gene networks

Xue Wen Chen; Gopalakrishna Anantha; Xinkun Wang

MOTIVATIONnBayesian network methods have shown promise in gene regulatory network reconstruction because of their capability of capturing causal relationships between genes and handling data with noises found in biological experiments. The problem of learning network structures, however, is NP hard. Consequently, heuristic methods such as hill climbing are used for structure learning. For networks of a moderate size, hill climbing methods are not computationally efficient. Furthermore, relatively low accuracy of the learned structures may be observed. The purpose of this article is to present a novel structure learning method for gene network discovery.nnnRESULTSnIn this paper, we present a novel structure learning method to reconstruct the underlying gene networks from the observational gene expression data. Unlike hill climbing approaches, the proposed method first constructs an undirected network based on mutual information between two nodes and then splits the structure into substructures. The directional orientations for the edges that connect two nodes are then obtained by optimizing a scoring function for each substructure. Our method is evaluated using two benchmark network datasets with known structures. The results show that the proposed method can identify networks that are close to the optimal structures. It outperforms hill climbing methods in terms of both computation time and predicted structure accuracy. We also apply the method to gene expression data measured during the yeast cycle and show the effectiveness of the proposed method for network reconstruction.


The Journal of Neuroscience | 2009

Transgenic Expression of Glud1 (Glutamate Dehydrogenase 1) in Neurons: In Vivo Model of Enhanced Glutamate Release, Altered Synaptic Plasticity, and Selective Neuronal Vulnerability

Xiaodong Bao; Ranu Pal; Kevin N. Hascup; Yongfu Wang; Wen Tung Wang; Wenhao Xu; Dongwei Hui; Abdulbaki Agbas; Xinkun Wang; Mary L. Michaelis; In-Young Choi; Andrei B. Belousov; Greg A. Gerhardt; Elias K. Michaelis

The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes.


BMC Neuroscience | 2009

Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress

Xinkun Wang; Asma Zaidi; Ranu Pal; Alexander S. Garrett; Rogelio Braceras; Xue Wen Chen; Mary L. Michaelis; Elias K. Michaelis

BackgroundOxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches.ResultsIn this report, using in vitro neuronal cultures, ex vivo organotypic brain slice cultures and acute brain slice preparations, we established that cerebellar granule (CbG) and hippocampal CA1 neurons were significantly more sensitive to OS (induced by paraquat) than cerebral cortical and hippocampal CA3 neurons. To probe for intrinsic differences between in vivo vulnerable (CA1 and CbG) and resistant (CA3 and cerebral cortex) neurons under basal conditions, these neurons were collected by laser capture microdissection from freshly excised brain sections (no OS treatment), and then subjected to oligonucleotide microarray analysis. GeneChip-based transcriptomic analyses revealed that vulnerable neurons had higher expression of genes related to stress and immune response, and lower expression of energy generation and signal transduction genes in comparison with resistant neurons. Subsequent targeted biochemical analyses confirmed the lower energy levels (in the form of ATP) in primary CbG neurons compared with cortical neurons.ConclusionLow energy reserves and high intrinsic stress levels are two underlying factors for neuronal selective vulnerability to OS. These mechanisms can be targeted in the future for the protection of vulnerable neurons.


Current Genomics | 2010

Functional genomics of brain aging and Alzheimer's disease: focus on selective neuronal vulnerability.

Xinkun Wang; Mary L. Michaelis; Elias K. Michaelis

Pivotal brain functions, such as neurotransmission, cognition, and memory, decline with advancing age and, especially, in neurodegenerative conditions associated with aging, such as Alzheimer’s disease (AD). Yet, deterioration in structure and function of the nervous system during aging or in AD is not uniform throughout the brain. Selective neuronal vulnerability (SNV) is a general but sometimes overlooked characteristic of brain aging and AD. There is little known at the molecular level to account for the phenomenon of SNV. Functional genomic analyses, through unbiased whole genome expression studies, could lead to new insights into a complex process such as SNV. Genomic data generated using both human brain tissue and brains from animal models of aging and AD were analyzed in this review. Convergent trends that have emerged from these data sets were considered in identifying possible molecular and cellular pathways involved in SNV. It appears that during normal brain aging and in AD, neurons vulnerable to injury or cell death are characterized by significant decreases in the expression of genes related to mitochondrial metabolism and energy production. In AD, vulnerable neurons also exhibit down-regulation of genes related to synaptic neurotransmission and vesicular transport, cytoskeletal structure and function, and neurotrophic factor activity. A prominent category of genes that are up-regulated in AD are those related to inflammatory response and some components of calcium signaling. These genomic differences between sensitive and resistant neurons can now be used to explore the molecular underpinnings of previously suggested mechanisms of cell injury in aging and AD.


New Phytologist | 2012

Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage.

Scott D. Russell; Xiaoping Gou; Chui E. Wong; Xinkun Wang; Tong Yuan; Xiaoping Wei; Prem L. Bhalla; Mohan Singh

Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10,732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development.


Human Vaccines | 2010

Immunoprofiling toll-like receptor ligands: Comparison of immunostimulatory and proinflammatory profiles in ex vivo human blood models.

Jennifer D. Hood; Hemamali J. Warshakoon; Matthew R. Kimbrell; Nikunj M. Shukla; Subbalakshmi S. Malladi; Xinkun Wang; Sunil A. David

There is a pressing need for the development of novel, safe, and effective adjuvants. The recent discovery and characterization of pathogen-associated molecular pattern (PAMP)-recognizing elements such as the Toll-like, NOD-like, and RIG-like receptors, has brought into sharp focus the role of PAMPs in bridging the innate and adaptive immune responses, and a detailed understanding of the immunostimulatory vis-à-vis proinflammatory activities could lead to the development of effective adjuvants, monophosphoryl lipid A being an excellent example. We describe in this paper a series of hierarchical assays that were employed to characterize TLR agonists in vitro including primary TLR-reporter assays, secondary indices of immune activation, and tertiary screens characterizing transcriptomal activation patterns to identify optimal immunostimulatory chemotypes. The evaluation of representative members of known human TLR agonists demonstrate that TLR2, -4, -5, and -7 agonists were immunostimulatory. TLR7 agonists were extremely immunostimulatory, stimulating nearly all subsets of lymphocytes without inducing proinflammatory cytokine responses. The TLR5 agonist, flagellin, while immunostimulatory, was also highly proinflammatory. These results suggest that TLR agonists other than lipid A-like chemotypes could be developed into potential adjuvants, and that this series of hierarchical assays could be adapted to rapidly identify in large libraries, compounds with adjuvantic potential that lack proinflammatory responses.


Drug Metabolism and Disposition | 2009

Regulation of Tissue-Specific Carboxylesterase Expression by Pregnane X Receptor and Constitutive Androstane Receptor

Chenshu Xu; Xinkun Wang; Jeff L. Staudinger

The liver- and intestine-enriched carboxylesterase 2 (CES2) enzyme catalyzes the hydrolysis of several clinically important anticancer agents administered as prodrugs. For example, irinotecan, a carbamate prodrug used in the treatment of colorectal cancer, is biotransformed in vivo by CES2 in intestine and liver, thereby producing a potent topoisomerase I inhibitor. Pregnane X receptor (PXR) and constitutive androstane receptor (CAR), two members of the nuclear receptor superfamily of ligand-activated transcription factors, mediate gene activation in response to xenobiotic stress. Together, these receptors comprise a protective response in mammals that coordinately regulate hepatic transport, metabolism, and elimination of numerous xenobiotic compounds. In the present study, microarray analysis was used to identify PXR target genes in duodenum in mice. Here, we show that a gene encoding a member of the CES2 subtype of liver- and intestine-enriched CES enzymes, called Ces6, is induced after treatment with pregnenolone 16α-carbonitrile in a PXR-dependent manner in duodenum and liver in mice. Treatment of mice with the CAR activator 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene also induced expression of Ces6 in duodenum and liver in a CAR-dependent manner, whereas treatment with phenobarbital produced induction of Ces6 exclusively in liver. These data identify a key role for PXR and CAR in regulating the drug-inducible expression and activity of an important CES enzyme in vivo. Future studies should focus on determining whether these signaling pathways governing drug-inducible CES expression in intestine and liver are conserved in humans.


Journal of Medicinal Chemistry | 2011

Structure−Activity Relationships in Nucleotide Oligomerization Domain 1 (Nod1) Agonistic γ-Glutamyldiaminopimelic Acid Derivatives

Geetanjali Agnihotri; Rehman Ukani; Subbalakshmi S. Malladi; Hemamali J. Warshakoon; Rajalakshmi Balakrishna; Xinkun Wang; Sunil A. David

N-acyl-γ-glutamyldiaminopimelic acid is a prototype ligand for Nod1. We report a detailed SAR of C(12)-γ-D-Glu-DAP. Analogues with glutaric or γ-aminobutyric acid replacing the glutamic acid show greatly attenuated Nod1-agonistic activity. Substitution of the meso-diaminopimelic (DAP) acid component with monoaminopimelic acid, L- or D-lysine, or cadaverine also results in reduced activity. The free amine on DAP is crucial. However, the N-acyl group on the D-glutamyl residue can be substituted with N-alkyl groups with full preservation of activity. The free carboxylates on the DAP and Glu components can also be esterified, resulting in more lipophilic but active analogues. Transcriptomal profiling showed a dominant up-regulation of IL-19, IL-20, IL-22, and IL-24, which may explain the pronounced Th2-polarizing activity of these compounds and also implicate cell signaling mediated by TREM-1. These results may explain the hitherto unknown mechanism of synergy between Nod1 and TLR agonists and are likely to be useful in designing vaccine adjuvants.


Journal of Medicinal Chemistry | 2013

Exquisite selectivity for human toll-like receptor 8 in substituted furo[2,3-c]quinolines.

Hari Prasad Kokatla; Diptesh Sil; Subbalakshmi S. Malladi; Rajalakshmi Balakrishna; Alec R. Hermanson; Lauren M. Fox; Xinkun Wang; Anshuman Dixit; Sunil A. David

Toll-like receptor (TLR)-8 agonists activate adaptive immune responses by inducing robust production of T helper 1-polarizing cytokines, suggesting that TLR8-active compounds may be promising candidate adjuvants. We synthesized and evaluated hitherto unexplored furo[2,3-c]quinolines and regioisomeric furo[3,2-c]quinolines derived via a tandem, one-pot Sonogashira coupling and intramolecular 5-endo-dig cyclization strategy in a panel of primary screens. We observed a pure TLR8-agonistic activity profile in select furo[2,3-c]quinolines, with maximal potency conferred by a C2-butyl group (EC50 = 1.6 μM); shorter, longer, or substituted homologues as well as compounds bearing C1 substitutions were inactive, which was rationalized by docking studies using the recently described crystal structure of human TLR8. The best-in-class compound displayed prominent proinflammatory cytokine induction (including interleukin-12 and interleukin-18), but was bereft of interferon-α inducing properties, confirming its high selectivity for human TLR8.

Collaboration


Dive into the Xinkun Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranu Pal

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge