Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ranu Pal is active.

Publication


Featured researches published by Ranu Pal.


The Journal of Neuroscience | 2009

Transgenic Expression of Glud1 (Glutamate Dehydrogenase 1) in Neurons: In Vivo Model of Enhanced Glutamate Release, Altered Synaptic Plasticity, and Selective Neuronal Vulnerability

Xiaodong Bao; Ranu Pal; Kevin N. Hascup; Yongfu Wang; Wen Tung Wang; Wenhao Xu; Dongwei Hui; Abdulbaki Agbas; Xinkun Wang; Mary L. Michaelis; In-Young Choi; Andrei B. Belousov; Greg A. Gerhardt; Elias K. Michaelis

The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes.


Experimental Brain Research | 2007

Elevated levels of brain-pathologies associated with neurodegenerative diseases in the methionine sulfoxide reductase A knockout mouse

Ranu Pal; Derek B. Oien; Fatma Y. Ersen; Jackob Moskovitz

One of the posttranslational modifications to proteins is methionine oxidation, which is readily reversible by the methionine sulfoxide reductase (Msr) system. Thus, accumulation of faulty proteins due to a compromised Msr system may lead to the development of aging-associated diseases like neurodegenerative diseases. In particular, it was interesting to monitor the consequential effects of methionine oxidation in relation to markers that are associated with Alzheimer’s disease as methionine oxidation was implied to play a role in beta-amyloid toxicity. In this study, a knockout mouse strain of the methionine sulfoxide reductase A gene (MsrA−/−) caused an enhanced neurodegeneration in brain hippocampus relative to its wild-type control mouse brain. Additionally, a loss of astrocytes integrity, elevated levels of beta-amyloid deposition, and tau phosphorylation were dominant in various regions of the MsrA−/− hippocampus but not in the wild-type. Also, a comparison between cultured brain slices of the hippocampal region of both mouse strains showed more sensitivity of the MsrA−/− cultured cells to H2O2 treatment. It is suggested that a deficiency in MsrA activity fosters oxidative-stress that is manifested by the accumulation of faulty proteins (via methionine oxidation), deposition of aggregated proteins, and premature brain cell death.


BMC Neuroscience | 2009

Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress

Xinkun Wang; Asma Zaidi; Ranu Pal; Alexander S. Garrett; Rogelio Braceras; Xue Wen Chen; Mary L. Michaelis; Elias K. Michaelis

BackgroundOxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches.ResultsIn this report, using in vitro neuronal cultures, ex vivo organotypic brain slice cultures and acute brain slice preparations, we established that cerebellar granule (CbG) and hippocampal CA1 neurons were significantly more sensitive to OS (induced by paraquat) than cerebral cortical and hippocampal CA3 neurons. To probe for intrinsic differences between in vivo vulnerable (CA1 and CbG) and resistant (CA3 and cerebral cortex) neurons under basal conditions, these neurons were collected by laser capture microdissection from freshly excised brain sections (no OS treatment), and then subjected to oligonucleotide microarray analysis. GeneChip-based transcriptomic analyses revealed that vulnerable neurons had higher expression of genes related to stress and immune response, and lower expression of energy generation and signal transduction genes in comparison with resistant neurons. Subsequent targeted biochemical analyses confirmed the lower energy levels (in the form of ATP) in primary CbG neurons compared with cortical neurons.ConclusionLow energy reserves and high intrinsic stress levels are two underlying factors for neuronal selective vulnerability to OS. These mechanisms can be targeted in the future for the protection of vulnerable neurons.


BMC Genomics | 2010

Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

Xinkun Wang; Xiaodong Bao; Ranu Pal; Abdulbaki Agbas; Elias K. Michaelis

BackgroundIncreases during aging in extracellular levels of glutamate (Glu), the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg) mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1) mouse, and littermate 9 month-old wild type mice.ResultsIntegrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites) and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated) form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntingtons disease signalling pathway, were also up-regulated.ConclusionsThis is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.


Brain Research | 1994

Immunologic localization and kinetic characterization of a Na+/Ca2+ exchanger in neuronal and non-neuronal cells

Mary L. Michaelis; Julie L. Walsh; Ranu Pal; Marc Hurlbert; Gary Hoel; Kimberly Bland; Judy Foye; Wing H. Kwong

The plasma membrane Na+/Ca2+ exchanger is believed to play a role in the regulation of Ca2+ fluxes in neurons, though the lack of specific inhibitors has limited the delineation of its precise contribution. We recently reported the development of antibodies against a 36-kDa brain synaptic membrane protein which immunoprecipitated exchanger activity from solubilized membranes. In the present study we examined the kinetics of the Na+/Ca2+ exchanger in primary neurons in culture, in a neuronal hybrid cell line (NCB-20), and in a fibroblast-like cell line (CV-1) to see whether the level of exchanger activity correlated with the degree of immunostaining produced by our antibodies. The Vmax was determined for each cell type and found to be highest in primary neurons. Exchanger activity increased in primary neurons between days 1 and 6 in culture, but no such time-dependent change occurred in either of the cell lines. Immunoblot analysis of the three cell types probed with the anti-36-kDa protein antibodies revealed significantly greater immunostaining in the primary neurons compared with the other two cell types. Intensity of staining of neurons also increased significantly between days 1 and 6 in culture. Immunocytochemistry showed significant labelling of the primary neurons on the neuritic processes and points of contact between cells. The NCB-20 and CV-1 cells showed considerably lower levels of immunoreactivity. The antibodies immunoextracted approximately 90% of the exchanger activity in the primary neurons and approximately 70 and 50% of the activity in NCB-20 and CV-1 cells respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


Free Radical Biology and Medicine | 2012

Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: A useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration

Victor S. Sharov; Ranu Pal; Elena S. Dremina; Elias K. Michaelis; Christian Schöneich

Protein tyrosine nitration is a common biomarker of biological aging and diverse pathologies associated with the excessive formation of reactive oxygen and nitrogen species. Recently, we suggested a novel fluorogenic derivatization procedure for the detection of 3-nitrotyrosine (3-NT) using benzylamine derivatives to convert specifically protein- or peptide-bound 3-NT to a highly fluorescent benzoxazole product. In this study, we applied this procedure to fluorogenic derivatization of protein 3-NT in sections from adult rat cerebellum to: (i) test this method for imaging nitrated proteins in fixed brain tissue sections and (ii) compare the chemical approach to immunohistochemical labeling with anti-3-NT antibodies. Immunofluorescence analysis of cerebellar sections using anti-3-NT antibodies showed differential levels of immunostaining in the molecular, Purkinje, and granule cell layers of the cerebellar cortex; in agreement with previous reports, the Purkinje cells were most highly labeled. Importantly, fluorogenic derivatization reactions of cerebellar proteins with 4-(aminomethyl)benzene sulfonic acid (ABS) and K(3)Fe(CN)(6) at pH 9, after sodium dithionite reduction of 3-NT to 3-aminotyrosine, showed a very similar pattern of relative intensity of cell labeling and improved resolution compared with antibody labeling. Our data demonstrate that ABS derivatization may be either a useful alternative to or a complementary approach to immunolabeling in imaging protein nitration in cells and tissues, including under conditions of dual labeling with antibodies to cell proteins, thus allowing for cellular colocalization of nitrated proteins and any protein of interest.


Neuroscience Letters | 1993

Immunochemical and immunohistochemical characterization of a synaptic membrane protein that binds the competitive antagonists of NMDA receptors

K.T. Eggeman; Ranu Pal; J. Walsh; Keshava N. Kumar; Elias K. Michaelis

An approximately 54-kDa protein that has binding sites for the competitive N-methyl-D-aspartate (NMDA) receptor antagonists 3-((+-)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP) and (+-)-(E)-2-amino-4-propyl-5-phosphonopentenoic acid (CGP 39653) was purified from rat brain synaptic membranes. Polyclonal antibodies to this protein reacted specifically with an approximately 54-kDa protein in synaptic membranes and immunoextracted approximately 60% of [3H]CGP 39653 binding sites associated with solubilized membrane proteins. The antibodies also labeled antigenic sites in the perikaryon and apical and basilar dendrites of pyramidal neurons of the hippocampus and cerebral cortex.


Journal of Neuroscience Research | 2015

Ischemic tolerance in an in vivo model of glutamate preconditioning

Yomna Badawi; Ranu Pal; Dongwei Hui; Elias K. Michaelis; Honglian Shi

Ischemia initiates a complicated biochemical cascade of events that triggers neuronal death. This study focuses on glutamate‐mediated neuronal tolerance to ischemia–reperfusion. We employed an animal model of lifelong excess release of glutamate, the glutamate dehydrogenase 1 transgenic (Tg) mouse, as a model of in vivo glutamate preconditioning. Nine‐ and twenty‐two‐month‐old Tg and wild‐type (wt) mice were subjected to 90 min of middle cerebral artery occlusion, followed by 24 hr of reperfusion. The Tg mice suffered significantly reduced infarction and edema volume compared with their wt counterparts. We further analyzed proteasomal activity, level of ubiquitin immunostaining, and microtubule‐associated protein‐2A (MAP2A) expression to understand the mechanism of neuroprotection observed in the Tg mice. We found that, in the absence of ischemia, the Tg mice exhibited higher activity of the 20S and 26S proteasomes, whereas there was no significant difference in the level of hippocampal ubiquitin immunostaining between wt and Tg mice. A surprising, significant increase was observed in MAP2A expression in neurons of the Tg hippocampus following ischemia–reperfusion compared with that in wt hippocampus. The results suggest that increased proteasome activity and MAP2A synthesis and transport might account for the effectiveness of glutamate preconditioning against ischemia–reperfusion.


Brain Research | 2001

3-Acetylpyridine reduces tongue protrusion force but does not abolish lick rhythm in the rat

Sheldon J Moss; Guanghui Wang; Rong Chen; Ranu Pal; Stephen C. Fowler

Data from other laboratories suggest that neurons in the inferior olivary nucleus (IO) may play a role in the modulation of rhythmic tongue movements in rats. Because of its known harmful effects on neurons of the IO, it was suspected that administration of the neurotoxin 3-acetylpyridine (3AP) would affect subsequent tongue dynamics during rat licking. In the present study, the task of licking water from a force-transducing disk was investigated in water-restricted rats that received systemic administration of 3AP (12.5, 25, and 50 mg/kg). After recovery from the acute toxic effects of 3AP, tongue dynamics were assessed by measuring lick force, lick rhythm, variability of timing within bursts of licking, and number of licks per 2-min session. At 50 mg/kg, 3AP resulted in: (1) reduced lick force; (2) reduced number of licks; and (3) increased variance in the timing within bursts. Lick rhythm was not significantly affected by any dose of 3AP. All 3AP treatment groups and the vehicle control group displayed slowing of lick rhythm after harmaline challenge. Compared to vehicle controls, rats receiving lower and mid-range doses of 3AP displayed indistinguishable lick behaviors, with one exception--when the lick task was made incrementally more difficult by extending the distance required to make contact with the lick-disk, rats that had received 25 mg/kg 3AP persevered at the task more than all other rats. The various changes in lick dynamics may be due to the detrimental effects of 3AP at the IO, and possibly at the hypoglossal nucleus and other sites.


Journal of Biological Chemistry | 2009

A rat brain bicistronic gene with an internal ribosome entry site codes for a phencyclidine-binding protein with cytotoxic activity

Dongwei Hui; Keshava N. Kumar; Julie R. Mach; Ashik Srinivasan; Ranu Pal; Xiaodong Bao; Abdulbaki Agbas; Georg Höfner; Klaus T. Wanner; Elias K. Michaelis

The cloning and characterization of the gene for the fourth subunit of a glutamate-binding protein complex in rat brain synaptic membranes are described. The cloned rat brain cDNA contained two open reading frames (ORFs) encoding 8.9- (PRO1) and 9.5-kDa (PRO2) proteins. The cDNA sequence matched contiguous genomic DNA sequences in rat chromosome 17. Both ORFs were expressed within the structure of a single brain mRNA and antibodies against unique sequences in PRO1- and PRO2-labeled brain neurons in situ, indicative of bicistronic gene expression. Dicistronic vectors in which ORF1 and ORF2 were substituted by either two different fluorescent proteins or two luciferases indicated concurrent, yet independent translation of the two ORFs. Transfection with noncapped mRNA led to cap-independent translation of only ORF2 through an internal ribosome entry sequence preceding ORF2. In vitro or cell expression of the cloned cDNA led to the formation of multimeric protein complexes containing both PRO1 and PRO2. These complexes had low affinity (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801)-sensitive phencyclidine-binding sites. Overexpression of PRO1 and PRO2 in CHO cells, but not neuroblastoma cells, caused cell death within 24–48 h. The cytotoxicity was blocked by concurrent treatment with MK-801 or by two tetrahydroisoquinolines that bind to phencyclidine sites in neuronal membranes. Co-expression of two of the other subunits of the protein complex together with PRO1/PRO2 abrogated the cytotoxic effect without altering PRO1/PRO2 protein levels. Thus, this rare mammalian bicistronic gene coded for two tightly interacting brain proteins forming a low affinity phencyclidine-binding entity in a synaptic membrane complex.

Collaboration


Dive into the Ranu Pal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge