Xinqi Wu
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xinqi Wu.
Cancer immunology research | 2014
F. Stephen Hodi; Donald P. Lawrence; Cecilia Lezcano; Xinqi Wu; Jun Zhou; Tetsuro Sasada; Wanyong Zeng; Anita Giobbie-Hurder; Michael B. Atkins; Nageatte Ibrahim; Philip Friedlander; Keith T. Flaherty; George F. Murphy; Scott J. Rodig; Elsa F. Velazquez; Martin C. Mihm; Sara Russell; Pamela J. DiPiro; Jeffrey T. Yap; Nikhil Ramaiya; Annick D. Van den Abbeele; Maria Gargano; David F. McDermott
Hodi and colleagues report the safety and efficacy of targeting angiogenesis and CTLA-4 in a phase I trial of 46 patients with metastatic melanoma, which revealed the influence of VEGF-A blockade on inflammation, lymphocyte trafficking, and immune regulation, and their synergistic therapeutic effects. Ipilimumab improves survival in advanced melanoma and can induce immune-mediated tumor vasculopathy. Besides promoting angiogenesis, vascular endothelial growth factor (VEGF) suppresses dendritic cell maturation and modulates lymphocyte endothelial trafficking. This study investigated the combination of CTLA4 blockade with ipilimumab and VEGF inhibition with bevacizumab. Patients with metastatic melanoma were treated in four dosing cohorts of ipilimumab (3 or 10 mg/kg) with four doses at 3-week intervals and then every 12 weeks, and bevacizumab (7.5 or 15 mg/kg) every 3 weeks. Forty-six patients were treated. Inflammatory events included giant cell arteritis (n = 1), hepatitis (n = 2), and uveitis (n = 2). On-treatment tumor biopsies revealed activated vessel endothelium with extensive CD8+ and macrophage cell infiltration. Peripheral blood analyses demonstrated increases in CCR7+/−/CD45RO+ cells and anti-galectin antibodies. Best overall response included 8 partial responses, 22 instances of stable disease, and a disease-control rate of 67.4%. Median survival was 25.1 months. Bevacizumab influences changes in tumor vasculature and immune responses with ipilimumab administration. The combination of bevacizumab and ipilimumab can be safely administered and reveals VEGF-A blockade influences on inflammation, lymphocyte trafficking, and immune regulation. These findings provide a basis for further investigating the dual roles of angiogenic factors in blood vessel formation and immune regulation, as well as future combinations of antiangiogenesis agents and immune checkpoint blockade. Cancer Immunol Res; 2(7); 632–42. ©2014 AACR.
Cancer immunology research | 2014
Jianping Yuan; Jun Zhou; Dong Z; Tandon S; Kuk D; Panageas Ks; Wong P; Xinqi Wu; Naidoo J; Page Db; Wolchok Jd; F.S. Hodi
Yuan, Zhou, and colleagues analyzed levels of serum VEGF in patients before and after ipilimumab therapy; they found that high pretreatment VEGF levels correlate with decreased overall survival. VEGF may serve as a biomarker for ipilimumab treatment. Ipilimumab, an antibody that blocks CTL antigen 4 (CTLA-4), improves overall survival (OS) for patients with metastatic melanoma. Given its role in angiogenesis and immune evasion, serum VEGF levels were evaluated for association with clinical benefit in ipilimumab-treated patients. Sera were collected from 176 patients treated at 3 (n = 98) or 10 mg/kg (n = 68). The VEGF levels before treatment and at induction completion (week 12) were analyzed using the Meso Scale Discovery kit. The association of the levels of VEGF with clinical responses and OS were assessed using the Fisher exact and Kaplan–Meier log-rank tests. VEGF as a continuous variable was associated with OS (P = 0.002). Using 43 pg/mL as the cutoff pretreatment VEGF value defined by maximally selected log-rank statistics, pretreatment VEGF values correlated with clinical benefit at week 24 (P = 0.019; 159 patients evaluable). Pretreatment VEGF ≥ 43 pg/mL was associated with decreased OS (median OS 6.6 vs. 12.9 months, P = 0.006; 7.4 vs. 14.3 months, P = 0.037 for 3 mg/kg; and 6.2 vs. 10.9 months, P = 0.048 for 10 mg/kg). There was no correlation between VEGF changes and clinical outcome. Serum VEGF may be a predictive biomarker for ipilimumab treatment and is worthy of prospective investigation with various forms of immunologic checkpoint blockade. Cancer Immunol Res; 2(2); 127–32. ©2014 AACR.
PLOS ONE | 2012
Xinqi Wu; Meijun Zhu; Jonathan A. Fletcher; Anita Giobbie-Hurder; F. Stephen Hodi
GNAQ mutations at codon 209 have been recently identified in approximately 50% of uveal melanomas (UM) and are reported to be oncogenic through activating the MAPK/Erk1/2 pathway. Protein kinase C (PKC) is a component of signaling from GNAQ to Erk1/2. Inhibition of PKC might regulate GNAQ mutation-induced Erk1/2 activation, resulting in growth inhibition of UM cells carrying GNAQ mutations. UM cells carrying wild type or mutant GNAQ were treated with the PKC inhibitor enzastaurin. Effects on proliferation, apoptosis, and signaling events were evaluated. Enzastaurin downregulated the expression of several PKC isoforms including PKCβII PKCθ, PKCε and/or their phosphorylation in GNAQ mutated cells. Downregulation of these PKC isoforms in GNAQ mutated cells by shRNA resulted in reduced viability. Enzastaurin exhibited greater antiproliferative effect on GNAQ mutant cells than wild type cells through induction of G1 arrest and apoptosis. Enzastaurin-induced G1 arrest was associated with inhibition of Erk1/2 phosphorylation, downregulation of cyclin D1, and accumulation of cyclin dependent kinase inhibitor p27Kip1. Furthermore, enzastaurin reduced the expression of antiapoptotic Bcl-2 and survivin in GNAQ mutant cells. Inhibition of Erk1/2 phosphorylation with a MEK specific inhibitor enhanced the sensitivity of GNAQ wild type cells to enzastaurin, accompanied by p27Kip1 accumulation and/or inhibition of enzastaurin-induced survivin and Bcl-2 upregulation. PKC inhibitors such as enzastaurin have activity against UM cells carrying GNAQ mutations through inhibition of the PKC/Erk1/2 pathway and induction of G1 arrest and apoptosis. Inhibition of the PKC pathway provides a basis for clinical investigation in patients with UM.
PLOS ONE | 2013
Xinqi Wu; Melina E. Marmarelis; F. Stephen Hodi
Heat shock protein 90 (HSP90) is involved in the regulation of diverse biological processes such as cell signaling, proliferation and survival, and has been recently recognized as a potential target for cancer therapy. Ganetespib is a potent ATP competitive inhibitor of HSP90. Ganetespib downregulated the expression of multiple signal transducing molecules including EGFR, IGF-1R, c-Met, Akt, B-RAF and C-RAF, resulting in pronounced decrease in phosphorylation of Akt and Erk1/2 in a panel of five cutaneous melanoma cell lines including those harboring B-RAF and N-RAS mutations. Ganetespib exhibited potent antiproliferative activity on all five of these cell lines, with IC50 values between 37.5 and 84 nM. Importantly, Ganetespib is active on B-RAF mutated melanoma cells that have acquired resistance to B-RAF inhibition. Ganetespib induced apoptosis and cell cycle arrest at G1 and/or G2/M phase. Ganetespib induced cell cycle arrest was accompanied by altered expression of cyclin-dependent kinase inhibitor (CDKI) p21Cip1 and p27Kip1, cyclins B1, D1 and E, and/or cyclin-dependent kinases 1, 2 and 4. HSP90 is functionally important for melanoma cells and HSP90 inhibitors such as ganetespib could potentially be effective therapeutics for melanoma with various genetic mutations and acquired resistance to B-RAF inhibition.
Cancer immunology research | 2016
Xinqi Wu; Anita Giobbie-Hurder; Xiaoyun Liao; Donald P. Lawrence; David F. McDermott; Jun Zhou; Scott J. Rodig; F.S. Hodi
Inhibiting both CTLA-4 and VEGF can lead to favorable clinical outcomes. This treatment increased the expression of IL1α, TNFα, IP-10, and the adhesion receptors associated with increased tumor lymphocyte infiltration, and augmented humoral immune responses recognizing tumor targets. Immune recognition of tumor targets by specific cytotoxic lymphocytes is essential for the effective rejection of tumors. A phase I clinical trial of ipilimumab (an antibody that blocks CTLA-4 function) in combination with bevacizumab (an antibody that inhibits angiogenesis) in patients with metastatic melanoma found favorable clinical outcomes were associated with increased tumor endothelial activation and lymphocyte infiltration. To better understand the underlying mechanisms, we sought features and factors that changed as a function of treatment in patients. Ipilimumab plus bevacizumab (Ipi-Bev) increased tumor vascular expression of ICAM1 and VCAM1. Treatment also altered concentrations of many circulating cytokines and chemokines, including increases of CXCL10, IL1α, TNFα, CXCL1, IFNα2, and IL8, with decreases in VEGF-A in most patients. IL1α and TNFα induced expression of E-selectin, CXCL1, and VCAM1 on melanoma tumor-associated endothelial cells (TEC) in vitro and promoted adhesion of activated T cells onto TEC. VEGFA inhibited TNFα-induced expression of ICAM1 and VCAM1 and T-cell adhesion, which was blocked by bevacizumab. CXCL10 promoted T-cell migration across TEC in vitro, was frequently expressed by melanoma cells, and was upregulated in a subset of tumors in treated patients. Robust upregulation of CXCL10 in tumors was accompanied by increased T-cell infiltration. Ipi-Bev also augmented humoral immune responses recognizing targets in melanoma, tumor endothelial, and tumor mesenchymal stem cells. Our findings suggest that Ipi-Bev therapy augments immune recognition in the tumor microenvironment through enhancing lymphocyte infiltration and antibody responses. IL1α, TNFα, and CXCL10, together with VEGF neutralization, contribute to Ipi-Bev–induced melanoma immune recognition. Cancer Immunol Res; 4(10); 858–68. ©2016 AACR.
Cancer immunology research | 2017
Xinqi Wu; Anita Giobbie-Hurder; Xiaoyun Liao; Courtney Connelly; Erin M. Connolly; Jingjing Li; Michael P. Manos; Donald P. Lawrence; David F. McDermott; Mariano Severgnini; Jun Zhou; Evisa Gjini; Ana Lako; Mikel Lipschitz; Christine Pak; Sara Abdelrahman; Scott J. Rodig; F. Stephen Hodi
Outcomes for metastatic melanoma patients treated with checkpoint blockade were poor when circulating Ang-2 was high. Ang-2 promoted recruitment of tumor macrophages and upregulated PD-L1, making it a predictive and/or prognostic biomarker and potential target to combine with checkpoint blockade. Immune checkpoint therapies targeting CTLA-4 and PD-1 have proven effective in cancer treatment. However, the identification of biomarkers for predicting clinical outcomes and mechanisms to overcome resistance remain as critical needs. Angiogenesis is increasingly appreciated as an immune modulator with potential for combinatorial use with checkpoint blockade. Angiopoietin-2 (ANGPT2) is an immune target in patients and is involved in resistance to anti-VEGF treatment with the monoclonal antibody bevacizumab. We investigated the predictive and prognostic value of circulating ANGPT2 in metastatic melanoma patients receiving immune checkpoint therapy. High pretreatment serum ANGPT2 was associated with reduced overall survival in CTLA-4 and PD-1 blockade–treated patients. These treatments also increased serum ANGPT2 in many patients early after treatment initiation, whereas ipilimumab plus bevacizumab treatment decreased serum concentrations. ANGPT2 increases were associated with reduced response and/or overall survival. Ipilimumab increased, and ipilimumab plus bevacizumab decreased, tumor vascular ANGPT2 expression in a subset of patients, which was associated with increased and decreased tumor infiltration by CD68+ and CD163+ macrophages, respectively. In vitro, bevacizumab blocked VEGF-induced ANGPT2 expression in tumor-associated endothelial cells, whereas ANGPT2 increased PD-L1 expression on M2-polarized macrophages. Treatments elicited long-lasting and functional antibody responses to ANGPT2 in a subset of patients receiving clinical benefit. Our findings suggest that serum ANGPT2 may be considered as a predictive and prognostic biomarker for immune checkpoint therapy and may contribute to treatment resistance via increasing proangiogenic and immunosuppressive activities in the tumor microenvironment. Targeting ANGPT2 provides a rational combinatorial approach to improve the efficacy of immune therapy. Cancer Immunol Res; 5(1); 17–28. ©2016 AACR.
Melanoma Research | 2012
Xinqi Wu; Jun Zhou; Andrew Rogers; Pasi A. Jänne; Elisa Benedettini; Massimo Loda; F. Stephen Hodi
Uveal melanoma (UM) has a high propensity to develop hepatic metastases. We sought to define the mechanisms required for preferential liver homing and to understand further the biologic behavior of this disease. The Met tyrosine kinase receptor and its ligand hepatocyte growth factor are expressed in hepatocytes. We therefore considered Met/hepatocyte growth factor signaling as a candidate migration/growth factor for UM cells. We further explored the relationship between c-Met and other growth factor receptors prevalent in the liver and their roles in UM metastatic potential. UM cell lines were evaluated for c-Met, epidermal growth factor receptor (EGFR), and insulin-like growth factor-1R (IGF-1R) expression by immunoblotting, and gene amplification by comparative genomic hybridization and fluorescence in-situ hybridization. High c-Met, phosphorylated c-Met, and EGFR expression were noted in two of nine cell lines, independent of IGF-1R levels. Knockdown of c-Met decreased proliferation of high c-Met-expressing UM cells but did not induce apoptosis. Selective inhibitors of EGFR and IGF-1R decreased proliferation and induced apoptosis in UM cells regardless of the expression levels of c-Met, EGFR, and IGF-1R. Although c-Met, EGFR, and IGF-1R play proliferative roles, EGFR and IGF-1R are also critical for UM cell survival. High c-Met/EGFR-expressing cell lines possessed the greatest migration potential. c-Met knockdown and selective inhibitors of c-Met, EGFR, and IGF-1R revealed independent contribution of these receptors to migration. UM can be categorized by levels of c-Met and EGFR expression which are associated with migratory/invasiveness responses to soluble factors present at high levels in the liver. This provides biologic relevance for UM clinical behavior with potential therapeutic implications.
Cancer immunology research | 2017
Jun Zhou; Kathleen M. Mahoney; Anita Giobbie-Hurder; Fengmin Zhao; Sandra J. Lee; Xiaoyun Liao; Scott J. Rodig; Jingjing Li; Xinqi Wu; Lisa H. Butterfield; Matthias Piesche; Michael P. Manos; Lauren M. Eastman; Glenn Dranoff; Gordon J. Freeman; F. Stephen Hodi
Melanoma cells could secrete several splice variants of PD-L1. Secretion differed among patients, and was affected by checkpoint therapy, with some changes associated with progressive disease, and others with favorable outcomes, suggesting circulating PD-L1 as a dynamic biomarker. Blockade of the pathway including programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) has produced clinical benefits in patients with a variety of cancers. Elevated levels of soluble PD-L1 (sPD-L1) have been associated with worse prognosis in renal cell carcinoma and multiple myeloma. However, the regulatory roles and function of sPD-L1 particularly in connection with immune checkpoint blockade treatment are not fully understood. We identified four splice variants of PD-L1 in melanoma cells, and all of them are secreted. Secretion of sPD-L1 resulted from alternate splicing activities, cytokine induction, cell stress, cell injury, and cell death in melanoma cells. Pretreatment levels of sPD-L1 were elevated in stage IV melanoma patient sera compared with healthy donors. High pretreatment levels of sPD-L1 were associated with increased likelihood of progressive disease in patients treated by CTLA-4 or PD-1 blockade. Although changes in circulating sPD-L1 early after treatment could not distinguish responders from those with progressive disease, after five months of treatment by CTLA-4 or PD-1 blockade patients who had increased circulating sPD-L1 had greater likelihood of developing a partial response. Induction of sPD-L1 was associated with increased circulating cytokines after CTLA-4 blockade but not following PD-1 blockade. Circulating sPD-L1 is a prognostic biomarker that may predict outcomes for subgroups of patients receiving checkpoint inhibitors. Cancer Immunol Res; 5(6); 480–92. ©2017 AACR.
Cancer immunology research | 2017
Xinqi Wu; Jianling Li; Erin M. Connolly; Xiaoyun Liao; Jing Ouyang; Anita Giobbie-Hurder; Donald P. Lawrence; David F. McDermott; George F. Murphy; Jun Zhou; Matthias Piesche; Glenn Dranoff; Scott J. Rodig; Margaret A. Shipp; F.S. Hodi
Galectin-1 is often produced by tumors and is protumoral, proangiogenic, and immunosuppressive. Ipilimumab plus bevacizumab induced production of neutralizing antibodies to galectin-1, which correlated with better clinical outcomes in metastatic melanoma patients, highlighting its utility as a therapeutic target. The combination of anti-VEGF blockade (bevacizumab) with immune checkpoint anti–CTLA-4 blockade (ipilimumab) in a phase I study showed tumor endothelial activation and immune cell infiltration that were associated with favorable clinical outcomes in patients with metastatic melanoma. To identify potential immune targets responsible for these observations, posttreatment plasma from long-term responding patients were used to screen human protein arrays. We reported that ipilimumab plus bevacizumab therapy elicited humoral immune responses to galectin-1 (Gal-1), which exhibits protumor, proangiogenesis, and immunosuppressive activities in 37.2% of treated patients. Gal-1 antibodies purified from posttreatment plasma suppressed the binding of Gal-1 to CD45, a T-cell surface receptor that transduces apoptotic signals upon binding to extracellular Gal-1. Antibody responses to Gal-1 were found more frequently in the group of patients with therapeutic responses and correlated with improved overall survival. In contrast, another subgroup of treated patients had increased circulating Gal-1 protein instead, and they had reduced overall survival. Our findings suggest that humoral immunity to Gal-1 may contribute to the efficacy of anti-VEGF and anti–CTLA-4 combination therapy. Gal-1 may offer an additional therapeutic target linking anti-angiogenesis and immune checkpoint blockade. Cancer Immunol Res; 5(6); 446–54. ©2017 AACR.
Cancer immunology research | 2015
Jun Zhou; Meghna Gupta; Xinqi Wu; Charles H. Yoon; Anita Giobbie-Hurder; F. Stephen Hodi
Zhou and colleagues identify broad immune responses to ATP6S1 in the peripheral blood of patients with advanced melanoma; augmented humoral responses from ipilimumab treatment correlated with beneficial clinical outcomes, and the authors propose the development of ATP6S1 as a biomarker and therapeutic target. The augmentation of high-titer antibodies to ATP6S1 is associated with favorable clinical outcomes in patients who received vaccination with autologous, irradiated tumor cells engineered to secrete GM-CSF and allogeneic bone marrow transplantation. Cellular immune responses to ATP6S1 are unknown. To define its role as an immune target, examination of cellular responses to ATP6S1 and immunity related to current therapies such as checkpoint blockade is needed. We used an overlapping peptide library representing the full-length ATP6S1 protein to screen for cellular responses from the peripheral blood of patients with stage III and IV melanoma. Reactive peptide pools were used to determine the individual peptide activity and epitopes. Recombinant ATP6S1 protein was used in an ELISA to assess potential correlation with humoral immune responses and changes in immunity related to CTLA-4 blockade with ipilimumab in these patients. We observed a broad array of CD4+ and CD8+ cellular responses against ATP6S1, including the identification of several MHC class I and II ATP6S1 epitopes. The generation of specific CD4+ and cytotoxic T cells revealed potent functional capability elicited by ipilimumab treatment in patients with metastatic melanoma, which revealed potent functional capability, including cytokine production, proliferation responsiveness to melanoma cell lines, and tumor-cell killing. Furthermore, the augmented humoral immune responses to ATP6S1 as a function of ipilimumab treatment were associated with beneficial clinical outcomes. These results support the continued development of ATP6S1 as a biomarker and therapeutic target. Cancer Immunol Res; 3(1); 59–67. ©2014 AACR.