Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinrong Ma is active.

Publication


Featured researches published by Xinrong Ma.


Cancer Research | 2006

Antagonism of CXCR3 Inhibits Lung Metastasis in a Murine Model of Metastatic Breast Cancer

Tonya C. Walser; Salah Rifat; Xinrong Ma; Namita Kundu; Christopher W. Ward; Olga Goloubeva; Michael G. Johnson; Julio C. Medina; Tassie L. Collins; Amy M. Fulton

Tumor cells aberrantly express chemokines and/or chemokine receptors, and some may promote tumor growth and metastasis. We examined the expression and function of chemokine receptor CXCR3 in a syngeneic murine model of metastatic breast cancer. By flow cytometry, CXCR3 was detected in all murine mammary tumor cell lines examined. All human breast cancer cell lines examined also expressed CXCR3, as did the immortalized but nontumorigenic MCF-10A cell line. Interaction of CXCR3 ligands, CXCL9, CXCL10, and CXCL11, with CXCR3 on the highly malignant murine mammary tumor cell line 66.1 resulted in intracellular calcium mobilization and chemotaxis in vitro. To test the hypothesis that tumor metastasis is facilitated by CXCR3 expressed by tumor cells, we employed a small molecular weight antagonist of CXCR3, AMG487. 66.1 tumor cells were pretreated with AMG487 prior to i.v. injection into immune-competent female mice. Antagonism of CXCR3 on 66.1 tumor cells inhibited experimental lung metastasis, and this antimetastatic activity was compromised in mice depleted of natural killer cells. Systemic administration of AMG487 also inhibited experimental lung metastasis. In contrast to the antimetastatic effect of AMG487, local growth of 66.1 mammary tumors was not affected by receptor antagonism. These studies indicate that murine mammary tumor cells express CXCR3 which facilitates the development of lung metastases. These studies also indicate for the first time that a small molecular weight antagonist of CXCR3 has the potential to inhibit tumor metastasis.


Cancer Research | 2006

Prostaglandin E Receptor EP4 Antagonism Inhibits Breast Cancer Metastasis

Xinrong Ma; Namita Kundu; Salah Rifat; Tonya C. Walser; Amy M. Fulton

Cyclooxygenase-2 (COX-2) expression in epithelial tumors is frequently associated with a poor prognosis. In a murine model of metastatic breast cancer, we showed that COX-2 inhibition is associated with decreased metastatic capacity. The COX-2 product, prostaglandin E(2) (PGE(2)), acts through a family of G protein-coupled receptors designated EP1-4 that mediate intracellular signaling by multiple pathways. We characterized EP receptor expression on three murine mammary tumor cell lines and show that all four EP isoforms were detected in each cell. Stimulation of cells with either PGE(2) or the selective EP4/EP2 agonist PGE(1)-OH resulted in increased intracellular cyclic AMP and this response was inhibited with either EP2 or EP4 antagonists. Nothing is known about the function of EP receptors in tumor metastasis. We tested the hypothesis that the prevention of EP receptor signaling would, like inhibition of PGE(2) synthesis, inhibit tumor metastasis. Our results show for the first time that antagonism of the EP4 receptor with either AH23848 or ONO-AE3-208 reduced metastasis as compared with vehicle-treated controls. The therapeutic effect was comparable to that observed with the dual COX-1/COX-2 inhibitor indomethacin. EP3 antagonism had no effect on tumor metastasis. Mammary tumor cells migrated in vitro in response to PGE(2) and this chemotactic response was blocked by EP receptor antagonists. Likewise, the proliferation of tumor cells was also directly inhibited by antagonists of either EP4 or EP1/EP2. These studies support the hypothesis that EP receptor antagonists may be an alternative approach to the use of COX inhibitors to prevent tumor metastasis.


Molecular Cancer Therapeutics | 2009

CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model

Xinrong Ma; Kelly Norsworthy; Namita Kundu; William H. Rodgers; Phyllis A. Gimotty; Olga Goloubeva; Michael M. Lipsky; Yanchun Li; Dawn Holt; Amy M. Fulton

Breast tumor cells express the chemokine receptor CXCR3, which binds the ligands CXCL9, CXCL10, and CXCL11. CXCR3 and other chemokine receptors may mediate tumor metastasis by supporting migration of tumor cells to sites of ligand expression including the lymph nodes, lungs, and bone marrow. We examined the relationship of CXCR3 expression to clinical outcome in 75 women diagnosed with early-stage breast cancer. We detected CXCR3 in malignant epithelium from all tumors. Twelve percent were weakly positive and 64% had moderate levels of CXCR3. Strong CXCR3-positive staining was observed in 24% of tumors. Kaplan-Meier survival curves showed that high CXCR3 expression was associated with poorer overall survival; the unadjusted hazard ratio was 1.56 and it was marginally significant (P = 0.07). When interactions between lymph node status and CXCR3 were considered, the adjusted hazard ratio for CXCR3 was 2.62 (P = 0.02) for women with node-negative disease at diagnosis, whereas the hazard ratio for CXCR3 was not significant for those with node-positive disease. CXCR3 gene silencing inhibited lung colonization and spontaneous lung metastasis from mammary gland–implanted tumors in a murine model. The size or growth rate of the locally growing tumors was not affected. The antimetastatic effect of CXCR3 gene silencing was compromised in mice depleted of Natural Killer cells or with mutations in IFN-γ, suggesting that the role of CXCR3 is not simply to mediate tumor cell trafficking. These studies support the continued examination of CXCR3 as a potential therapeutic target in patients with breast cancer. [Mol Cancer Ther 2009;8(3):490–8]


Journal of Immunotherapy | 2007

Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model.

Tonya C. Walser; Xinrong Ma; Namita Kundu; Russell Dorsey; Olga Goloubeva; Amy M. Fulton

Current immunotherapies are limited by several factors, including the failure to recruit sufficient numbers of immune effector cells to tumors. The chemokine monokine induced by γ-interferon (Mig; CXCL9) attracts activated T cells and natural killer (NK) cells bearing the chemokine receptor CXCR3. We investigated Mig as an immunotherapeutic agent in a syngeneic murine model of metastatic breast cancer. We transfected the highly malignant murine mammary tumor cell line 66.1 to stably express murine Mig cDNA. Immune-competent mice injected with Mig-expressing tumor cells developed smaller local tumors and fewer lung metastases, and they survived longer than mice injected with vector-control tumor cells. Mig-mediated inhibition of local tumor growth was lost in the absence of host T cells. Mig-transduced tumors had increased numbers of CD4+ T cells compared with vector-control tumors, consistent with the T-cell chemoattractant property of Mig, and many tumor-infiltrating host cells expressed CXCR3. NK cells had not been examined previously as a possible effector cell in Mig-based therapies. Our studies now show that NK cells are critical to the mechanism by which Mig limits metastasis. Inhibition of angiogenesis was not implicated as a mechanism of Mig-mediated therapy in this model. These studies support the hypothesis that by manipulating the Mig-CXCR3 gradient, it is possible to direct host immune effector cells to tumors, curtailing both local tumor growth and metastasis. These studies also implicate host NK cells as an additional effector cell critical for Mig-mediated control of metastasis.


Cancer Immunology, Immunotherapy | 2005

Cyclooxygenase inhibitors modulate NK activities that control metastatic disease

Namita Kundu; Tonya C. Walser; Xinrong Ma; Amy M. Fulton

Cyclooxygenase (COX) inhibitors have demonstrated efficacy in models of human cancer but the relevant mechanisms have not all been elucidated. Both Cox-dependent as well as Cox-independent mechanisms have been implicated. Using a syngeneic model of metastatic breast cancer, we have investigated the effect of Cox inhibitors on NK functions that are critical to the control of metastatic disease. NK recognition of target cells is governed by a balance of activating and inhibiting receptors that bind ligands including MHC class I. We now show that treatment of tumor cells with the nonselective COX-1/COX-2 inhibitor indomethacin or the selective COX-2 inhibitor celecoxib leads to decreased expression of the MHC class I molecules Ld and Kd . Downregulated class I expression is associated with concomitant increased sensitivity to NK cell-mediated lysis. Both COX inhibitors limit tumor metastasis and this therapeutic effect is dependent on NK but not T cell function. Antimetastatic activity is also lost in the absence of interferon- γ (IFN-γ). Both COX inhibitors also suppress local tumor growth of subcutaneously implanted mammary tumor cells in immune competent Balb/cByJ mice. This therapeutic activity is lost in the absence of either CD4+ or CD8+ T cells, but is not compromised by the loss of NK activity. Thus, the mechanism of tumor inhibition differs in the context of local versus metastatic disease. Taken together, these findings are consistent with a mechanism not previously described, whereby COX inhibitors may relieve MHC-mediated inhibition of NK cytotoxicity leading to recognition and lysis of metastatic tumor cells.


Breast Cancer Research and Treatment | 2012

Frondoside A inhibits breast cancer metastasis and antagonizes prostaglandin E receptors EP4 and EP2

Xinrong Ma; Namita Kundu; Peter D. Collin; Olga Goloubeva; Amy M. Fulton

Frondoside A, derived from the sea cucumber Cucumaria frondosa has demonstrable anticancer activity in several models, however, the ability of Frondoside A to affect tumor metastasis has not been reported. Using a syngeneic murine model of metastatic breast cancer, we now show that Frondoside A has potent antimetastatic activity. Frondoside A given i.p. to mice bearing mammary gland-implanted mammary tumors, inhibits spontaneous tumor metastasis to the lungs. The elevated Cyclooxygenase-2 activity in many malignancies promotes tumor growth and metastasis by producing high levels of PGE2 which acts on the prostaglandin E receptors, chiefly EP4 and EP2. We examined the ability of Frondoside A to modulate the functions of these EP receptors. We now show that Frondoside A antagonizes the prostaglandin E receptors EP2 and EP4. 3H-PGE2 binding to recombinant EP2 or EP4-expressing cells was inhibited by Frondoside A at low μM concentrations. Likewise, EP4 or EP2-linked activation of intracellular cAMP as well as EP4-mediated ERK1/2 activation were also inhibited by Frondoside A. Consistent with the antimetastatic activity observed in vivo, migration of tumor cells in vitro in response to EP4 or EP2 agonists was also inhibited by Frondoside A. These studies identify a new function for an agent with known antitumor activity, and show that the antimetastatic activity may be due in part to a novel mechanism of action. These studies add to the growing body of evidence that Frondoside A may be a promising new agent with potential to treat cancer and may also represent a potential new modality to antagonize EP4.


Cancer Immunology, Immunotherapy | 2011

Prostaglandin E 2 (PGE 2 ) suppresses natural killer cell function primarily through the PGE 2 receptor EP4

Dawn Holt; Xinrong Ma; Namita Kundu; Amy M. Fulton

The COX-2 product prostaglandin E2 (PGE2) contributes to the high metastatic capacity of breast tumors. Our published data indicate that inhibiting either PGE2 production or PGE2-mediated signaling through the PGE2 receptor EP4 reduces metastasis by a mechanism that requires natural killer (NK) cells. It is known that NK cell function is compromised by PGE2, but very little is known about the mechanism by which PGE2 affects NK effector activity. We now report the direct effects of PGE2 on the NK cell. Endogenous murine splenic NK cells express all four PGE2 receptors (EP1-4). We examined the role of EP receptors in three NK cell functions: migration, cytotoxicity, and cytokine release. Like PGE2, the EP4 agonist PGE1-OH blocked NK cell migration to FBS and to four chemokines (ITAC, MIP-1α, SDF-1α, and CCL21). The EP2 agonist, Butaprost, inhibited migration to specific chemokines but not in response to FBS. In contrast to the inhibitory actions of PGE2, the EP1/EP3 agonist Sulprostone increased migration. Unlike the opposing effects of EP4 vs. EP1/EP3 on migration, agonists of each EP receptor were uniformly inhibiting to NK-mediated cytotoxicity. The EP4 agonist, PGE1-OH, inhibited IFNγ production from NK cells. Agonists for EP1, EP2, and EP3 were not as effective at inhibiting IFNγ. Agonists of EP1, EP2, and EP4 all inhibited TNFα; EP4 agonists were the most potent. Thus, the EP4 receptor consistently contributed to loss of function. These results, taken together, support a mechanism whereby inhibiting PGE2 production or preventing signaling through the EP4 receptor may prevent suppression of NK functions that are critical to the control of breast cancer metastasis.


OncoImmunology | 2013

A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE2-mediated immunosuppression and inhibits breast cancer metastasis

Xinrong Ma; Dawn Holt; Namita Kundu; Jocelyn Reader; Olga Goloubeva; Yukinori Take; Amy M. Fulton

Cyclooxygenase-2 is frequently upregulated in epithelial tumors and contributes to poor outcomes in multiple malignancies. The COX-2 product prostaglandin E2 (PGE2) promotes tumor growth and metastasis by acting on a family of four G protein-coupled receptors (EP1–4). Using a novel small molecule EP4 antagonist (RQ-15986) and a syngeneic murine model of metastatic breast cancer, we determined the effect of EP4 blockade on innate immunity and tumor biology. Natural killer (NK)-cell functions are markedly depressed in mice bearing murine mammary tumor 66.1 or 410.4 cells owing to the actions of PGE2 on NK cell EP4 receptors. The EP4 agonist PGE1-OH inhibits NK functions in vitro, and this negative regulation is blocked by RQ-15986. Likewise, the treatment of tumor-bearing mice with RQ-15986 completely protected NK cells from the immunosuppressive effects of the tumor microenvironment in vivo. RQ-15986 also has direct effects on EP4 expressed by tumor cells, inhibiting the PGE2-mediated activation of adenylate cyclase and blocking PGE2-induced tumor cell migration. The pretreatment of tumor cells with a non-cytotoxic concentration of RQ-15986 inhibited lung colonization, a beneficial effect that was lost in mice depleted of NK cells. The oral administration of RQ-15986 inhibited the growth of tumor cells implanted into mammary glands and their spontaneous metastatic colonization to the lungs, resulting in improved survival. Our findings reveal that EP4 antagonism prevents tumor-mediated NK-cell immunosuppression and demonstrates the anti-metastatic activity of a novel EP4 antagonist. These observations support the investigation of EP4 antagonists in clinical trials.


Journal of Immunotherapy | 2012

Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4.

Dawn Holt; Xinrong Ma; Namita Kundu; Peter D. Collin; Amy M. Fulton

Breast malignancies often have high levels of COX-2. The COX-2 product prostaglandin E2 (PGE2) contributes to the high metastatic capacity of breast tumors. Our published data indicate that inhibiting either PGE2 production or PGE2-mediated signaling through the PGE2 receptor EP4 (1 of 4 EP expressed on the malignant cell) reduces metastasis by a mechanism that requires natural killer (NK) cells. Tumor-derived PGE2 and exogenous PGE2 are known to have direct inhibitory effects on NK cell functions, but less is known regarding which EP receptors mediate these effects. We now show that several NK functions (lysis, migration, cytokine production) are compromised in tumor-bearing mice and that tumor-produced PGE2 interferes with NK cell functions. PGE2 inhibits the potential of NK cells to migrate, exert cytotoxic effects, and secrete interferon &ggr;. The ability of PGE2 to inhibit NK cells from tumor-bearing mice is by acting on EP2 and EP4 receptors. NK cells from tumor-bearing mice were more sensitive to inhibition by EP4 and EP2 agonists compared with endogenous NK cells from healthy mice. PGE2 was inhibitory to most NK functions of either normal or tumor-bearing mice. In contrast, there was a trend for enhanced tumor necrosis factor &agr; production in response to PGE2 by NK cells from tumor-bearing mice. We also report that a recently described EP4 antagonist, frondoside A, inhibits breast tumor metastasis in an NK-dependent manner and protects interferon &ggr; production by NK cells from PGE2-mediated suppression. Taken together these data show that NK functions are depressed in tumor-bearing hosts relative to normal NK cells and that PGE2 suppresses NK functions by acting on EP2 and EP4 receptors.


Breast Cancer Research and Treatment | 2014

Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties

Namita Kundu; Xinrong Ma; Tyler Kochel; Olga Goloubeva; Paul Staats; Keyata Thompson; Stuart S. Martin; Jocelyn Reader; Yukinori Take; Peter D. Collin; Amy M. Fulton

The cyclooxygenase pathway is strongly implicated in breast cancer progression but the role of this pathway in the biology of breast cancer stem/progenitor cells has not been defined. Recent attention has focused on targeting the cyclooxygenase 2 (COX-2) pathway downstream of the COX-2 enzyme by blocking the activities of individual prostaglandin E (EP) receptors. Prostaglandin E receptor 4 (EP4) is widely expressed in primary invasive ductal carcinomas of the breast and antagonizing this receptor with small molecule inhibitors or shRNA directed to EP4 inhibits metastatic potential in both syngeneic and xenograft models. Breast cancer stem/progenitor cells are defined as a subpopulation of cells that drive tumor growth, metastasis, treatment resistance, and relapse. Mammosphere-forming breast cancer cells of human (MDA-MB-231, SKBR3) or murine (66.1, 410.4) origin of basal-type, Her-2 phenotype and/or with heightened metastatic capacity upregulate expression of both EP4 and COX-2 and are more tumorigenic compared to the bulk population. In contrast, luminal-type or non-metastatic counterparts (MCF7, 410, 67) do not increase COX-2 and EP4 expression in mammosphere culture. Treatment of mammosphere-forming cells with EP4 inhibitors (RQ-15986, AH23848, Frondoside A) or EP4 gene silencing, but not with a COX inhibitor (Indomethacin) reduces both mammosphere-forming capacity and the expression of phenotypic markers (CD44hi/CD24low, aldehyde dehydrogenase) of breast cancer stem cells. Finally, an orally delivered EP4 antagonist (RQ-08) reduces the tumor-initiating capacity and markedly inhibits both the size of tumors arising from transplantation of mammosphere-forming cells and phenotypic markers of stem cells in vivo. These studies support the continued investigation of EP4 as a potential therapeutic target and provide new insight regarding the role of EP4 in supporting a breast cancer stem cell/tumor-initiating phenotype.

Collaboration


Dive into the Xinrong Ma's collaboration.

Top Co-Authors

Avatar

Namita Kundu

University of Maryland Marlene and Stewart Greenebaum Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn Holt

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Tyler Kochel

University of Maryland Marlene and Stewart Greenebaum Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanchun Li

University of Maryland Marlene and Stewart Greenebaum Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bachchu Lal

Kennedy Krieger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge