Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinxian Deng is active.

Publication


Featured researches published by Xinxian Deng.


Nature Reviews Genetics | 2014

X chromosome regulation: diverse patterns in development, tissues and disease

Xinxian Deng; Joel B. Berletch; Di K. Nguyen; Christine M. Disteche

Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.


PLOS ONE | 2008

Sex-Specific Expression of the X-Linked Histone Demethylase Gene Jarid1c in Brain

Jun Xu; Xinxian Deng; Christine M. Disteche

Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5′end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries). This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function.


The Journal of Neuroscience | 2008

Sex-Specific Differences in Expression of Histone Demethylases Utx and Uty in Mouse Brain and Neurons

Jun Xu; Xinxian Deng; Rebecca Watkins; Christine M. Disteche

Although X inactivation is thought to balance gene expression between the sexes, some genes escape inactivation, potentially contributing to differences between males and females. Utx (ubiquitously transcribed tetratricopeptide repeat gene on X chromosome) is an escapee gene that encodes a demethylase specific for lysine 27 of histone H3, a mark of repressed chromatin. We found Utx to be expressed higher in females than in males in developing and adult brains and in adult liver. XX mice had a higher level of Utx than XY mice, regardless of whether they had testes or ovaries, indicating that the sexually dimorphic gene expression was a consequence of the sex chromosome complement. Females had significantly higher levels of Utx than males in most brain regions except in the amygdala. The regional expression of the Y-linked paralogue Uty (ubiquitously transcribed tetratricopeptide repeat gene on Y chromosome) was somewhat distinct from that of Utx, specifically in the paraventricular nucleus of the hypothalamus (high Uty) and the amygdala (high Utx), implying that the two paralogues may be differentially regulated. Higher expression of Utx compared with Uty was detected in P19 pluripotent embryonic carcinoma cells as well as in P19-derived neurons. This transcriptional divergence between the two paralogues was associated with high levels of histone H3 lysine 4 dimethylation at the Utx promoter and of histone H4 lysine 16 acetylation throughout the gene body, which suggests that epigenetic mechanisms control differential expression of paralogous genes.


Nature Methods | 2015

Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes

Wenxiu Ma; Ferhat Ay; Choli Lee; Günhan Gülsoy; Xinxian Deng; Savannah Cook; Jennifer Hesson; Christopher Cavanaugh; Carol B. Ware; Anton Krumm; Jay Shendure; Carl Anthony Blau; Christine M. Disteche; William Stafford Noble; Zhijun Duan

High-throughput methods based on chromosome conformation capture have greatly advanced our understanding of the three-dimensional (3D) organization of genomes but are limited in resolution by their reliance on restriction enzymes. Here we describe a method called DNase Hi-C for comprehensively mapping global chromatin contacts. DNase Hi-C uses DNase I for chromatin fragmentation, leading to greatly improved efficiency and resolution over that of Hi-C. Coupling this method with DNA-capture technology provides a high-throughput approach for targeted mapping of fine-scale chromatin architecture. We applied targeted DNase Hi-C to characterize the 3D organization of 998 large intergenic noncoding RNA (lincRNA) promoters in two human cell lines. Our results revealed that expression of lincRNAs is tightly controlled by complex mechanisms involving both super-enhancers and the Polycomb repressive complex. Our results provide the first glimpse of the cell type–specific 3D organization of lincRNA genes.


Genome Biology | 2015

The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation

Fan Yang; Xinxian Deng; Wenxiu Ma; Joel B. Berletch; Natalia A. Rabaia; Gengze Wei; James M. Moore; Galina N. Filippova; Jun Xu; Yajuan Liu; William Stafford Noble; Jay Shendure; Christine M. Disteche

BackgroundIn mammals, X chromosome genes are present in one copy in males and two in females. To balance the dosage of X-linked gene expression between the sexes, one of the X chromosomes in females is silenced. X inactivation is initiated by upregulation of the lncRNA (long non-coding RNA) Xist and recruitment of specific chromatin modifiers. The inactivated X chromosome becomes heterochromatic and visits a specific nuclear compartment adjacent to the nucleolus.ResultsHere, we show a novel role for the lncRNA Firre in anchoring the inactive mouse X chromosome and preserving one of its main epigenetic features, H3K27me3. Similar to Dxz4, Firre is X-linked and expressed from a macrosatellite repeat locus associated with a cluster of CTCF and cohesin binding sites, and is preferentially located adjacent to the nucleolus. CTCF binding present initially in both male and female mouse embryonic stem cells is lost from the active X during development. Knockdown of Firre disrupts perinucleolar targeting and H3K27me3 levels in mouse fibroblasts, demonstrating a role in maintenance of an important epigenetic feature of the inactive X chromosome. No X-linked gene reactivation is seen after Firre knockdown; however, a compensatory increase in the expression of chromatin modifier genes implicated in X silencing is observed. Further experiments in female embryonic stem cells suggest that Firre does not play a role in X inactivation onset.ConclusionsThe X-linked lncRNA Firre helps to position the inactive X chromosome near the nucleolus and to preserve one of its main epigenetic features.


Nature Methods | 2017

Massively multiplex single-cell Hi-C

Vijay Ramani; Xinxian Deng; Ruolan Qiu; Kevin L. Gunderson; Christine M. Disteche; William Stafford Noble; Zhijun Duan; Jay Shendure

We present single-cell combinatorial indexed Hi-C (sciHi-C), a method that applies combinatorial cellular indexing to chromosome conformation capture. In this proof of concept, we generate and sequence six sciHi-C libraries comprising a total of 10,696 single cells. We use sciHi-C data to separate cells by karyotypic and cell-cycle state differences and identify cell-to-cell heterogeneity in mammalian chromosomal conformation. Our results demonstrate that combinatorial indexing is a generalizable strategy for single-cell genomics.


Genome Biology | 2015

Bipartite structure of the inactive mouse X chromosome

Xinxian Deng; Wenxiu Ma; Vijay Ramani; Andrew J. Hill; Fan Yang; Ferhat Ay; Joel B. Berletch; Carl Anthony Blau; Jay Shendure; Zhijun Duan; William Stafford Noble; Christine M. Disteche

BackgroundIn mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems.ResultsWe find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele.ConclusionsBy applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.


PLOS Genetics | 2015

Escape from X Inactivation Varies in Mouse Tissues

Joel B. Berletch; Wenxiu Ma; Fan Yang; Jay Shendure; William Stafford Noble; Christine M. Disteche; Xinxian Deng

X chromosome inactivation (XCI) silences most genes on one X chromosome in female mammals, but some genes escape XCI. To identify escape genes in vivo and to explore molecular mechanisms that regulate this process we analyzed the allele-specific expression and chromatin structure of X-linked genes in mouse tissues and cells with skewed XCI and distinguishable alleles based on single nucleotide polymorphisms. Using a binomial model to assess allelic expression, we demonstrate a continuum between complete silencing and expression from the inactive X (Xi). The validity of the RNA-seq approach was verified using RT-PCR with species-specific primers or Sanger sequencing. Both common escape genes and genes with significant differences in XCI status between tissues were identified. Such genes may be candidates for tissue-specific sex differences. Overall, few genes (3–7%) escape XCI in any of the mouse tissues examined, suggesting stringent silencing and escape controls. In contrast, an in vitro system represented by the embryonic-kidney-derived Patski cell line showed a higher density of escape genes (21%), representing both kidney-specific escape genes and cell-line specific escape genes. Allele-specific RNA polymerase II occupancy and DNase I hypersensitivity at the promoter of genes on the Xi correlated well with levels of escape, consistent with an open chromatin structure at escape genes. Allele-specific CTCF binding on the Xi clustered at escape genes and was denser in brain compared to the Patski cell line, possibly contributing to a more compartmentalized structure of the Xi and fewer escape genes in brain compared to the cell line where larger domains of escape were observed.


Developmental Cell | 2013

Mammalian X Upregulation Is Associated with Enhanced Transcription Initiation, RNA Half-Life, and MOF-Mediated H4K16 Acetylation

Xinxian Deng; Joel B. Berletch; Wenxiu Ma; Di Kim Nguyen; Joseph Hiatt; William Stafford Noble; Jay Shendure; Christine M. Disteche

X upregulation in mammals increases levels of expressed X-linked transcripts to compensate for autosomal biallelic expression. Here, we present molecular mechanisms that enhance X expression at transcriptional and posttranscriptional levels. Active mouse X-linked promoters are enriched in the initiation form of RNA polymerase II (PolII-S5p) and in specific histone marks, including histone H4 acetylated at lysine 16 (H4K16ac) and histone variant H2AZ. The H4K16 acetyltransferase males absent on the first (MOF), known to mediate the Drosophila X upregulation, is also enriched on the mammalian X. Depletion of MOF or male-specific lethal 1 (MSL1) in mouse ES cells causes a specific decrease in PolII-S5p and in expression of a subset of X-linked genes. Analyses of RNA half-life data sets show increased stability of mammalian X-linked transcripts. Both ancestral X-linked genes, defined as those conserved on chicken autosomes, and newly acquired X-linked genes are upregulated by similar mechanisms but to a different extent, suggesting that subsets of genes are distinctly regulated depending on their evolutionary history.


PLOS Genetics | 2013

Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A.

Joel B. Berletch; Xinxian Deng; Di Kim Nguyen; Christine M. Disteche

The Rhox cluster on the mouse X chromosome contains reproduction-related homeobox genes expressed in a sexually dimorphic manner. We report that two members of the Rhox cluster, Rhox6 and 9, are regulated by de-methylation of histone H3 at lysine 27 by KDM6A, a histone demethylase with female-biased expression. Consistent with other homeobox genes, Rhox6 and 9 are in bivalent domains prior to embryonic stem cell differentiation and thus poised for activation. In female mouse ES cells, KDM6A is specifically recruited to Rhox6 and 9 for gene activation, a process inhibited by Kdm6a knockdown in a dose-dependent manner. In contrast, KDM6A occupancy at Rhox6 and 9 is low in male ES cells and knockdown has no effect on expression. In mouse ovary where Rhox6 and 9 remain highly expressed, KDM6A occupancy strongly correlates with expression. Our study implicates Kdm6a, a gene that escapes X inactivation, in the regulation of genes important in reproduction, suggesting that KDM6A may play a role in the etiology of developmental and reproduction-related effects of X chromosome anomalies.

Collaboration


Dive into the Xinxian Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhijun Duan

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Di Kim Nguyen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Fan Yang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jun Xu

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Vijay Ramani

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge