Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiongjie Shi is active.

Publication


Featured researches published by Xiongjie Shi.


Toxicology and Applied Pharmacology | 2008

Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS

Xiongjie Shi; Yongbing Du; Paul K.S. Lam; Rudolf S.S. Wu; Bingsheng Zhou

Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential mechanisms of developmental toxicity.


Aquatic Toxicology | 2009

Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos

Jun Deng; Liqin Yu; Chunsheng Liu; Ke Yu; Xiongjie Shi; Leo W. Y. Yeung; Paul K.S. Lam; Rudolf S.S. Wu; Bingsheng Zhou

Hexabromocyclododecane (HBCD) is widely used as a brominated flame retardant, and has been detected in the aquatic environment, wild animals, and humans. However, details of the environmental health risk of HBCD are not well known. In this study, zebrafish embryos were used to assess the developmental toxicity of the chemical. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of HBCD (0, 0.05, 0.1, 0.5, and 1.0 mg L(-1)) until 96 h. Exposure to 0.1, 0.5, and 1.0 mg L(-1) HBCD significantly increased the malformation rate and reduced survival in the 0.5 and 1.0 mg L(-1) HBCD exposure groups. Acridine orange (AO) staining showed that HBCD exposure resulted in cell apoptosis. Reactive oxygen species (ROS) was significantly induced at exposures of 0.1, 0.5, and 1.0 mg L(-1) HBCD. To test the apoptotic pathway, several genes related to cell apoptosis, such as p53, Puma, Apaf-1, caspase-9, and caspase-3, were examined using real-time PCR. The expression patterns of these genes were up-regulated to some extent. Two anti-apoptotic genes, Mdm2 (antagonist of p53) and Bcl-2 (inhibitor of Bax), were down-regulated, and the activity of capspase-9 and caspase-3 was significantly increased. The overall results demonstrate that waterborne HBCD is able to produce oxidative stress and induce apoptosis through the involvement of caspases in zebrafish embryos. The results also indicate that zebrafish embryos can serve as a reliable model for the developmental toxicity of HBCD.


Aquatic Toxicology | 2010

Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae

Liqin Yu; Jun Deng; Xiongjie Shi; Chunsheng Liu; Ke Yu; Bingsheng Zhou

Polybrominated diphenyl ethers (PBDEs) have the potential to disrupt thyroid hormone homeostasis, but the molecular mechanisms underlying this process have not yet been clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to a low concentration (0, 1, 3, and 10microg/L) of DE-71 from fertilization to 14 days thereafter. The whole-body content of thyroid hormone and transcription of genes in the hypothalamic-pituitary-thyroid (HPT) axis were analyzed. Exposure to up to 10microg/L of DE-71 significantly reduced thyroxine (T4) levels and significantly upregulated the transcription of corticotrophin-releasing hormone (CRH) and thyroid-stimulating hormone (TSHbeta) genes in a concentration-dependent manner. The transcription of genes involved in the synthesis of TH proteins, sodium/iodide symporter (Slc5a5), and thyroglobulin (TG) and the transcription of marker genes associated with early thyroid development (Pax8 and Nkx2.1) were significantly upregulated upon DE-71 exposure. The expression of thyronine deiodinase (Deio1 and Deio2) mRNAs was also significantly upregulated, possibly as a compensatory response to the decreased T4 levels. However, DE-71 exposure resulted in the downregulation of transthyretin (TTR) gene transcription and did not affect the transcription of thyroid hormone receptors (TRs). Exposure to DE-71 significantly induced the transcription of the uridinediphosphate-glucuronosyltransferase (UGT1ab) gene. The results of our study confirmed the reliability of the zebrafish larvae as models for assessment of the developmental toxicity of PBDEs and transcription of genes of the HPT axis can evaluate the potential mechanisms of thyroid disruption.


Toxicological Sciences | 2010

The Role of Nrf2 and MAPK Pathways in PFOS-Induced Oxidative Stress in Zebrafish Embryos

Xiongjie Shi; Bingsheng Zhou

Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant and causes oxidative stress, apoptosis, and developmental toxicity in zebrafish embryos. In the present study, we examined nuclear factor erythroid 2-related factor 2 (Nrf2)- and mitogen-activated protein kinases (MAPKs)-mediated oxidative stress pathways in zebrafish embryos upon exposure to PFOS. Four-hour postfertilization (hpf) zebrafish embryos were exposed to 0.2, 0.4, and 1.0 mg/l PFOS until 96 hpf. PFOS enhanced production of reactive oxygen species (ROS) in a concentration-dependent manner. Activity of antioxidative enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, was significantly induced in zebrafish larvae in all PFOS-treated groups relative to the control. Exposure to 1.0 mg/l PFOS significantly increased malondialdehyde production in zebrafish larvae. The Nrf2 and heme oxygenase-1 (HO-1) gene expressions were both significantly upregulated compared with the control group. For MAPKs, we investigated gene expression profiles of extracellular signal-regulated protein kinase (ERK), c-Jun NH (2)-terminal kinase (JNK), and p38. The ERK gene expression levels were unchanged, whereas JNK and p38 gene expressions were significantly upregulated, which could be linked to PFOS-induced cell apoptosis in zebrafish larvae. In addition, we found that coexposure with sulforaphane, an Nrf2 activator, could significantly protect against PFOS-induced ROS generation, whereas inhibition of MAPKs did not exhibit significant effects on PFOS-induced HO-1 gene expression and ROS production. Furthermore, we showed that morpholino-mediated knockdown of Nrf2 reduced PFOS-induced HO-1 gene expression. These findings demonstrate that Nrf2 is protective against PFOS-induced oxidative stress in zebrafish larvae.


Chemosphere | 2009

Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: A partial life-cycle test

Yongbing Du; Xiongjie Shi; Chunsheng Liu; Ke Yu; Bingsheng Zhou

Perfluorooctane sulfonate (PFOS) is widely distributed and persistent in the environment and wildlife. The main aim of this study was to investigate the impact of long-term exposure to low concentrations of PFOS in zebrafish. Zebrafish fry (F(0), 14 d post-fertilization, dpf) were exposed via the water for 70 d to 0 (control), 10, 50 and 250 microg L(-1) PFOS, followed by a further 30 d to assess recovery in clean water. The effects on survival and growth parameters and liver histopathology were assessed. Although growth suppression (weight and length) was observed in fish treated with high concentrations PFOS during the exposure period, no mortality was observed throughout the 70 d experiment. Embryos and larvae (F(1)) derived from maternal exposure suffered malformation and mortality. Exposure to 50 and 250 microg L(-1) PFOS could inhibit the growth of the gonads (GSI) in the female zebrafish. Histopathological alterations, primary with lipid droplets accumulation, were most prominently seen in the liver of males and the changes were not reversible, even after the fish were allowed to recover for 30 d in clean water. The triiodothyronine (T(3)) levels were not significantly changed in any of the exposure groups. Hepatic vitellogenin (VTG) gene expression was significantly up-regulated in both male and female zebrafish, but the sex ratio was not altered. The overall results suggested that lower concentrations of PFOS in maternal exposure could result in offspring deformation and mortality.


Chemosphere | 2009

Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae

Xiongjie Shi; Chunsheng Liu; Guoqiao Wu; Bingsheng Zhou

Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 microgL(-1)) and gene expression patterns were examined 15d post-fertilization. The expression of several genes in the HPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), iodothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TRalpha and TRbeta), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 microg L(-1) PFOS. A significant increase in NIS and Dio1 gene expression was observed at 200 microg L(-1) PFOS exposure, while TG gene expression was down-regulated at 200 and 400 microg L(-1) PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TRalpha and TRbeta gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T(4)) content remained unchanged, whereas triiodothyronine (T(3)) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones.


Toxicological Sciences | 2009

Protein profiles in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate.

Xiongjie Shi; Leo W. Y. Yeung; Paul K.S. Lam; Rudolf S.S. Wu; Bingsheng Zhou

Perfluorooctane sulfonate (PFOS) is widely distributed and persistent in the environment and in wildlife, and it has the potential for developmental toxicity. However, the molecular mechanisms that lead to these toxic effects are not well known. In the present study, proteomic analysis has been performed to investigate the proteins that are differentially expressed in zebrafish embryos exposed to 0.5 mg/l PFOS until 192 h postfertilization. Two-dimensional electrophoresis coupled with mass spectrometry was employed to detect and identify the protein profiles. The analysis revealed that 69 proteins showed altered expression in the treatment group compared to the control group with either increase or decrease in expression levels (more than twofold difference). Of the 69 spots corresponding to the proteins with altered expression, 38 were selected and subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (TOF/TOF) analysis; 18 proteins were identified in this analysis. These proteins can be categorized into diverse functional classes such as detoxification, energy metabolism, lipid transport/steroid metabolic process, cell structure, signal transduction, and apoptosis. Overall, proteomic analysis using zebrafish embryos serves as an in vivo model in environmental risk assessment and provides insight into the molecular events in PFOS-induced developmental toxicity.


Journal of Hazardous Materials | 2015

Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae

Qi Fang; Xiongjie Shi; Liping Zhang; Qiangwei Wang; Xianfeng Wang; Yongyong Guo; Bingsheng Zhou

This study investigated the influence of titanium dioxide nanoparticles (n-TiO2) on the bioavailability, metabolism, and toxicity of pentachlorophenol (PCP) in fish. Zebrafish (Danio rerio) embryos or larvae (2-h post-fertilization) were exposed to PCP (0, 3, 10, and 30 μg/L) alone or in combination with n-TiO2 (0.1mg/L) until 6 days post-fertilization. Results showed that n-TiO2 treatment alone did not induce lipid peroxidation, DNA damage, as well as the generation of reactive oxygen species (ROS) in the larvae. As compared with PCP treatment, the co-exposure of PCP and n-TiO2 enhanced the induction of ROS generation, eventually leading to lipid peroxidation and DNA damage. The nuclear factor erythroid 2-related factor 2 gene transcriptions were significantly upregulated in both PCP treatment alone and in combination with n-TiO2. Chemical analysis and histological examination showed that n-TiO2 adsorb PCP, and n-TiO2 are taken up by developing zebrafish larvae; however, PCP content was not enhanced in the presence of n-TiO2, but the metabolism of PCP to tetrachlorohydroquinone was enhanced in larvae. The results indicate that n-TiO2 enhanced the metabolism of PCP and caused oxidative damage and developmental toxicity, suggesting that NPs can influence the fate and toxicity of associated organic pollutants in the aquatic environment.


Aquatic Toxicology | 2009

Combined effects of polyfluorinated and perfluorinated compounds on primary cultured hepatocytes from rare minnow (Gobiocypris rarus) using toxicogenomic analysis

Yanhong Wei; Xiongjie Shi; Hongxia Zhang; Jianshe Wang; Bingsheng Zhou; Jiayin Dai

Polyfluorinated and perfluorinated compounds (PFCs) are used in numerous commercial products and have been ubiquitously detected in the environment as well as in the blood of humans and wildlife. To assess the combined effects caused by PFCs in mixtures, gene expression profiles were generated using a custom cDNA microarray to detect changes in primary cultured hepatocytes of rare minnows exposed to six individual PFCs (perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, perfluorooctane sulfonate, and 8:2 fluorotelomer alcohol) and four formulations of the PFCs mixtures. Mixtures as well as individual compounds consistently regulated a particular gene set, which suggests that these conserved genes may play a central role in the toxicity mediated by PFCs. Specifically, a number of genes regulated by the mixtures were identified in this study, which were not affected by exposure to any single component. These genes are implicated in multiple biological functions and processes, including fatty acid metabolism and transport, xenobiotic metabolism, immune responses, and oxidative stress. More than 80% of the altered genes in the PFOA- and PFOS-dominant mixture groups were of the same gene set, while the gene expression profiles from single PFOA and PFOS exposures were not as similar. This work contributes to the development of toxicogenomic approaches in combined toxicity assessment and allows for comprehensive insights into the combined action of PFCs mixtures in multiple environmental matrices.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2011

Effects of xenoestrogens on the expression of vitellogenin (vtg) and cytochrome P450 aromatase (cyp19a and b) genes in zebrafish (Danio rerio) larvae

Jingxian Wang; Xiongjie Shi; Yongbin Du; Bingsheng Zhou

In the present study, expression levels of vitellogenin (vtg) and cytochrome P450 aromatase genes (cyp19a and cyp19b) in zebrafish larvae during the early stages of development were investigated by quantitative real time-PCR assay. The results indicated that vtg gene transcription was induced seven days after zebrafish larvae fertilization, whereas the expression of cyp19a and cyp19b genes was detected as early as 3 and 4 days post-fertilization (dpf). Investigations into the effects of 17β-estradiol (E2) exposure on the expression of these genes showed that both vtg and cyp19b were upregulated by E2 in zebrafish larvae as early as four dpf, whereas no variation was observed in cyp19a gene expression. The estrogenic potential of pharmaceutical estrogen (DES), phenol estrogen (BPA) and the brominated flame retardants, TBBPA, DE-71 and 4-BP, were evaluated by analyzing the expression of these three genes in zebrafish larvae. The results demonstrated that natural estrogen, endocrine disrupting compounds and brominated flame retardants act as endocrine disrupters through different mechanisms. We have demonstrated for the first time that the polybrominated diphenyl ether mixture, DE-71, acts as an endocrine disrupter by upregulation of cyp19b gene expression at a relatively low concentration. These results indicate that analysis of vtg and cyp19b gene expression in zebrafish during early embryogenesis and organogenesis represents the basis of a sensitive and fast bioassay for the routine assessment of xenoestrogen effects.

Collaboration


Dive into the Xiongjie Shi's collaboration.

Top Co-Authors

Avatar

Bingsheng Zhou

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Chunsheng Liu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ke Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Paul K.S. Lam

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Rudolf S.S. Wu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jun Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liqin Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiangwei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongyong Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge