Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuchun Han is active.

Publication


Featured researches published by Xiuchun Han.


Materials Science and Engineering: C | 2015

Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

Hongrui Liu; Jian Cui; Wei Feng; Shengyu Lv; Juan Du; Jing Sun; Xiuchun Han; Zhenming Wang; Xiong Lu; Yimin; Kimimitsu Oda; Norio Amizuka; Minqi Li

The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects.


Molecular Medicine Reports | 2016

Immunolocalization of MMP9 and MMP2 in osteolytic metastasis originating from MDA-MB-231 human breast cancer cells

Bo Liu; Jian Cui; Jing Sun; Juan Li; Xiuchun Han; Jie Guo; Min Yi; Norio Amizuka; Xin Xu; Minqi Li

The aim of the present study was to investigate the expression of matrix metalloproteinase (MMP)9 and MMP2, and their potential roles in bone metastasis nests using a well-standardized model of breast cancer bone metastasis in nude mice. BALB/c nu/nu mice (5-week-old; n=10) were subjected to intracardiac injection of MDA-MB-231 human breast cancer cells. After 4 weeks, the mice exhibiting radiolucent lesions in tibiae were sacrificed, and the tibiae were removed for histochemical analysis. The gene expression of MMP2 and MMP9 in the tumor cells, metaphysis and diaphysis of normal BALB/c nu/nu mice were determined using reverse transcription-polymerase chain reaction analysis. The metastatic tumor tissue occupied almost the entire bone marrow cavity. Numerous tartrate-resistant acid phosphatase-positive osteoclasts were found in the metastasized lesions. The invaded tumor cells positive for mammaglobin 1 exhibited different proliferation activities and apoptosis between the metaphysis and diaphysis. Proliferating cell nuclear antigen was expressed at high levels in the metaphyseal area, whereas TdT-mediated dUTP nick-end labeling (TUNEL)-positive cells were more evident in the diaphysis area. Of note, MMP9 was expressed predominantly in the proliferating cell nuclear antigen-positive area, whereas the expression of MMP2 was observed predominantly in the diaphysis, which had more TUNEL-positive cells. Taken together, the results suggested that MMP9 and MMP2 may have their own importance in extracellular matrix degradation and trabecular bone damage in different zones of bone metastasis, including the metaphysis and diaphysis.


Scientific Reports | 2017

Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways

Wei Feng; Hongrui Liu; Tingting Luo; Di Liu; Juan Du; Jing Sun; Wei Wang; Xiuchun Han; Kaiyun Yang; Jie Guo; Norio Amizuka; Minqi Li

Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal–regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.


Materials Science and Engineering: C | 2015

Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α,25(OH)2D3

Wei Feng; Shengyu Lv; Jian Cui; Xiuchun Han; Juan Du; Jing Sun; Kefeng Wang; Zhenming Wang; Xiong Lu; Jie Guo; Kimimitsu Oda; Norio Amizuka; Xin Xu; Minqi Li

The purpose of this study was to evaluate the effects of osteogenic differentiated adipose-derived stem cell (ADSC) loaded beta-tricalcium phosphate (β-TCP) in the restoration of bone defects under intraperitoneal administration of 1α,25-dihydroxyvitamin D3(1α,25(OH)2D3). ADSCs were isolated from the fat tissue of 8 week old Wister rats and co-cultured with β-TCP for 21 days under osteogenic induction. Then the ADSC-β-TCP complexes were implanted into bone defects in the femora of rats. 1α,25(OH)2D3 (VD) or normal saline (NS) was administrated intraperitoneally every other day after the surgery. Femora were harvested at day 7, day 14 and day 28 post-surgery. There were 4 groups for all specimens: β-TCP-NS group; β-TCP-ADSC-NS group; β-TCP-VD group and β-TCP-ADSC-VD group. Alkaline phosphatase (ALP) was up-regulated obviously in ADSC groups compared with non-ADSC groups at day 7, day 14 and day 28, although high expression of runt-related transcription factor 2 (RUNX2) was only seen at day 7. Furthermore, the number of TRAP-positive osteoclasts and the expression of cathepsin K (CK) were significantly decreased in VD groups compared with non-VD groups at day 7 and day 14. As a most significant finding, the β-TCP-ADSC-VD group showed the highest BV/TV ratio compared with the other three groups at day 28. Taken together, ADSC-loaded β-TCP under the administration of 1α,25(OH)2D3 made a promising therapy for bone defects restoration.


Archives of Oral Biology | 2016

Altered distribution of Ghrelin protein in mice molar development

Bo Liu; Xiuchun Han; Wei Feng; Jian Cui; Tomoka Hasegawa; Norio Amizuka; Xin Xu; Minqi Li

OBJECTIVE Ghrelin, an appetite-stimulating hormone, plays diverse regulatory functions in cell growth, proliferation, differentiation and apoptosis during mammalian development. There is limited information currently available regarding Ghrelin expression during mammalian tooth development, thus we aimed to establish the spatiotemporal expression of Ghrelin during murine molar odontogenesis. DESIGN Immunohistochemistry was performed to detect the expression pattern of Ghrelin in mandible molar from E15.5 to PN7 during murine tooth development. RESULTS The results showed that Ghrelin initially expressed in the inner enamel epithelium and the adjacent mesenchymal cells below, further with persistent expression in the ameloblasts and odontoblasts throughout the following developmental stages. In addition, Ghrelin was also present in Hertwigs epithelial root sheath at the beginning of tooth root formation. CONCLUSIONS These results suggest that Ghrelin was present in tooth organs throughout the stages of tooth development, especially in ameloblasts and odontoblasts with little spatiotemporal expression differences. However, the potential regulatory roles of this hormone in tooth development still need to be validated by functional studies.


Cell Proliferation | 2017

Adipocytes enhance expression of osteoclast adhesion-related molecules through the CXCL12/CXCR4 signalling pathway

Tingting Luo; Hongrui Liu; Wei Feng; Di Liu; Juan Du; Jing Sun; Wei Wang; Xiuchun Han; Jie Guo; Norio Amizuka; Xianqi Li; Minqi Li

The purpose of this study was to investigate effects of adipocytes on osteoclast adhesion‐related molecules.


Histology and Histopathology | 2016

Immunolocalization of MMP 2, 9 and 13 in prednisolone induced osteoporosis in mice.

Bao Sun; Jing Sun; Xiuchun Han; Hongrui Liu; Juan Li; Juan Du; Wei Feng; Bo Liu; Jian Cui; Jie Guo; Norio Amizuka; Minqi Li

Long-term use of glucocorticoids (GC) causes rapid bone loss and increases the risk of osteoporotic fractures. Matrix metalloproteinase (MMPs), the most prominent kind of proteases implicated in the proteolytic degradation of the extracellular matrix (ECM), have been reported to be involved in pathological process of GC induced osteoporosis. However, the underlining mechanisms are still unclear. The aim of this study was to investigate the spatial expression and the potential function of MMP 2, 9 and 13 in osteoporosis induced by prednisolone in the tibiae of mice. In this experiment, mice were given prednisolone (15 mg/kg body weight) in PBS intragastrically every other day, or only PBS as control. Two weeks later, mice were fixed with transcardial perfusion of 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), and tibiae were extracted for histochemical analysis. Compared with control group, the number of TRAP-positive osteoclasts and the immunoreactivity of MMP 2, 9 and 13 were significantly increased in the trabecular bone of mice administered with prednisolone, leading to the decrease of trabecular bone volume. On the other hand, lighter eosin staining areas containing numerous empty lacunae of osteocytes and crevices were seen in the narrowing cortical bone. Furthermore, intense immunoreaction of MMP 2 and MMP 13 were found in the enlarged lacunae and the crevices, respectively. Taken together, we concluded that prednisolone administration induced the increase of MMP 2, 9 and 13 expressions, while MMP 2 and MMP 13 played essential roles in the osteocytic osteolysis and the early impaired areas in the cortical bone. Therefore, MMPs might be new potential therapeutic targets for prevention and treatment of glucocorticoid induced osteoporosis, especially osteocytic osteolysis.


Journal of Histochemistry and Cytochemistry | 2016

Long-Term Administration of High-Fat Diet Corrects Abnormal Bone Remodeling in the Tibiae of Interleukin-6-Deficient Mice

Wei Feng; Bo Liu; Di Liu; Tomoka Hasegawa; Wei Wang; Xiuchun Han; Jian Cui; Yimin; Kimimitsu Oda; Norio Amizuka; Minqi Li

In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6-/- mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6-/- and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6-/- mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6-/- mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6-/- mice on a HFD as compared with IL-6-/- mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis.


Journal of Molecular Histology | 2016

The effect of calcitriol on high mobility group box 1 expression in periodontal ligament cells during orthodontic tooth movement in rats

Jian Cui; Juan Li; Wei Wang; Xiuchun Han; Juan Du; Jing Sun; Wei Feng; Bo Liu; Hongrui Liu; Norio Amizuka; Minqi Li


Journal of Molecular Histology | 2015

Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo's orthodontic tooth movement.

Juan Li; Wei Feng; Bo Liu; Bao Sun; Xiuchun Han; Juan Du; Jing Sun; Yimin; Jian Cui; Jie Guo; Akira Kudo; Norio Amizuka; Minqi Li

Collaboration


Dive into the Xiuchun Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Liu

Shandong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge