Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuhong Zhai is active.

Publication


Featured researches published by Xiuhong Zhai.


Nature | 2013

Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids.

Dhirendra K. Simanshu; Ravi Kanth Kamlekar; Dayanjan S. Wijesinghe; Xianqiong Zou; Xiuhong Zhai; Shrawan K. Mishra; Julian G. Molotkovsky; Lucy Malinina; Edward H. Hinchcliffe; Charles E. Chalfant; Rhoderick E. Brown; Dinshaw J. Patel

Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated ‘sandwich’ topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.


Journal of Lipid Research | 2007

New BODIPY lipid probes for fluorescence studies of membranes

Ivan A. Boldyrev; Xiuhong Zhai; Maureen M. Momsen; Howard L. Brockman; Rhoderick E. Brown; Julian G. Molotkovsky

Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) at the end of C3-, C5-, C7-, or C9-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me4-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me4-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me4-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and ∼506–515 nm) but also showed the absence of the 620–630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me4-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.


Journal of Biological Chemistry | 2009

Side Chain Oxygenated Cholesterol Regulates Cellular Cholesterol Homeostasis through Direct Sterol-Membrane Interactions

Sarah E. Gale; Emily J. Westover; Nicole Dudley; Kathiresan Krishnan; Sean Merlin; David E. Scherrer; Xianlin Han; Xiuhong Zhai; Howard L. Brockman; Rhoderick E. Brown; Douglas F. Covey; Jean E. Schaffer; Paul H. Schlesinger; Daniel S. Ory

Side chain oxysterols exert cholesterol homeostatic effects by suppression of sterol regulatory element-binding protein maturation and promoting degradation of hydroxymethylglutaryl-CoA reductase. To examine whether oxysterol-membrane interactions contribute to the regulation of cellular cholesterol homeostasis, we synthesized the enantiomer of 25-hydroxycholesterol. Using this unique oxysterol probe, we provide evidence that oxysterol regulation of cholesterol homeostatic responses is not mediated by enantiospecific oxysterol-protein interactions. We show that side chain oxysterols, but not steroid ring-modified oxysterols, exhibit membrane expansion behavior in phospholipid monolayers and bilayers in vitro. This behavior is non-enantiospecific and is abrogated by increasing the saturation of phospholipid acyl chain constituents. Moreover, we extend these findings into cultured cells by showing that exposure to saturated fatty acids at concentrations that lead to endoplasmic reticulum membrane phospholipid remodeling inhibits oxysterol activity. These studies implicate oxysterol-membrane interactions in acute regulation of sterol homeostatic responses and provide new insights into the mechanism through which oxysterols regulate cellular cholesterol balance.


Journal of Biological Chemistry | 2009

Glycolipid Acquisition by Human Glycolipid Transfer Protein Dramatically Alters Intrinsic Tryptophan Fluorescence INSIGHTS INTO GLYCOLIPID BINDING AFFINITY

Xiuhong Zhai; Margarita Malakhova; Helen M. Pike; Linda M. Benson; H. Robert Bergen; Istvan P. Sugar; Lucy Malinina; Dinshaw J. Patel; Rhoderick E. Brown

Glycolipid transfer proteins (GLTPs) are small, soluble proteins that selectively accelerate the intermembrane transfer of glycolipids. The GLTP fold is conformationally unique among lipid binding/transfer proteins and serves as the prototype and founding member of the new GLTP superfamily. In the present study, changes in human GLTP tryptophan fluorescence, induced by membrane vesicles containing glycolipid, are shown to reflect glycolipid binding when vesicle concentrations are low. Characterization of the glycolipid-induced “signature response,” i.e. ∼40% decrease in Trp intensity and ∼12-nm blue shift in emission wavelength maximum, involved various modes of glycolipid presentation, i.e. microinjection/dilution of lipid-ethanol solutions or phosphatidylcholine vesicles, prepared by sonication or extrusion and containing embedded glycolipids. High resolution x-ray structures of apo- and holo-GLTP indicate that major conformational alterations are not responsible for the glycolipid-induced GLTP signature response. Instead, glycolipid binding alters the local environment of Trp-96, which accounts for ∼70% of total emission intensity of three Trp residues in GLTP and provides a stacking platform that aids formation of a hydrogen bond network with the ceramide-linked sugar of the glycolipid headgroup. The changes in Trp signal were used to quantitatively assess human GLTP binding affinity for various lipids including glycolipids containing different sugar headgroups and homogenous acyl chains. The presence of the glycolipid acyl chain and at least one sugar were essential for achieving a low-to-submicromolar dissociation constant that was only slightly altered by increased sugar headgroup complexity.


Journal of Lipid Research | 2013

GLTP-fold interaction with planar phosphatidylcholine surfaces is synergistically stimulated by phosphatidic acid and phosphatidylethanolamine

Xiuhong Zhai; William E. Momsen; Dmitry Malakhov; Ivan A. Boldyrev; Maureen M. Momsen; Julian G. Molotkovsky; Howard L. Brockman; Rhoderick E. Brown

Among amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being viable sites for GLTP interaction. Herein, GLTP-mediated desorption kinetics of fluorescent glycolipid (tetramethyl-boron dipyrromethene (BODIPY)-label) from lipid monolayers are assessed using a novel microfluidics-based surface balance that monitors lipid lateral packing while simultaneously acquiring surface fluorescence data. At biomembrane-like packing (30–35 mN/m), GLTP uptake of BODIPY-glycolipid from POPC monolayers was nearly nonexistent but could be induced by reducing surface pressure to mirror packing in curvature-stressed bilayers. In contrast, 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) matrices supported robust BODIPY-glycolipid uptake by GLTP at both high and low surface pressures. Unexpectedly, negatively-charged cytosol-facing lipids, i.e., phosphatidic acid and phosphatidylserine, also supported BODIPY-glycolipid uptake by GLTP at high surface pressure. Remarkably, including both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (5 mol%) and POPE (15 mol%) in POPC synergistically activated GLTP at high surface pressure. Our study shows that matrix lipid headgroup composition, rather than molecular packing per se, is a key regulator of GLTP-fold function while demonstrating the novel capabilities of the microfluidics-based film balance for investigating protein-membrane interfacial interactions.


Journal of Biological Chemistry | 2017

Phosphatidylserine stimulates ceramide 1-phosphate (C1P) intermembrane transfer by C1P transfer proteins

Xiuhong Zhai; Yong Guang Gao; Shrawan K. Mishra; Dhirendra K. Simanshu; Ivan A. Boldyrev; Linda M. Benson; H. Robert Bergen; Lucy Malinina; John Mundy; Julian G. Molotkovsky; Dinshaw J. Patel; Rhoderick E. Brown

Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant (acd11). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, “soluble” phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid.


Langmuir | 2014

Nanoscale packing differences in sphingomyelin and phosphatidylcholine revealed by bodipy fluorescence in monolayers: Physiological implications

Xiuhong Zhai; Ivan A. Boldyrev; Nancy K. Mizuno; Maureen M. Momsen; Julian G. Molotkovsky; Howard L. Brockman; Rhoderick E. Brown

Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force–area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force–area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match.


International Journal of Biomedical Imaging | 2010

Characterization of the lateral distribution of fluorescent lipid in binary-constituent lipid monolayers by principal component analysis

Istvan P. Sugar; Xiuhong Zhai; Ivan A. Boldyrev; Julian G. Molotkovsky; Howard L. Brockman; Rhoderick E. Brown

Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.


Cell Reports | 2014

Arabidopsis accelerated cell death 11, ACD11, Is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels

Dhirendra K. Simanshu; Xiuhong Zhai; David Munch; Daniel Hofius; Jonathan E. Markham; Jacek Bielawski; Alicja Bielawska; Lucy Malinina; Julian G. Molotkovsky; John W. Mundy; Dinshaw J. Patel; Rhoderick E. Brown


Structure | 2011

Enhanced selectivity for sulfatide by engineered human glycolipid transfer protein.

Valeria R. Samygina; Alexander Popov; Aintzane Cabo-Bilbao; Borja Ochoa-Lizarralde; Felipe Goni-de-Cerio; Xiuhong Zhai; Julian G. Molotkovsky; Dinshaw J. Patel; Rhoderick E. Brown; Lucy Malinina

Collaboration


Dive into the Xiuhong Zhai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dinshaw J. Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lucy Malinina

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ivan A. Boldyrev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dhirendra K. Simanshu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge