Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiulan Wang is active.

Publication


Featured researches published by Xiulan Wang.


Physiologia Plantarum | 2008

Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress

Geng-Qing Huang; Wen-Liang Xu; Siying Gong; Bing Li; Xiulan Wang; Dan Xu; Xue-Bao Li

Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), are usually involved in cell development in plants. To investigate the expression profiling as well as the role of FLA genes in fiber development, 19 GhFLA genes (cDNAs) were isolated from cotton (Gossypium hirsutum). Among them, 15 are predicted to be glycosylphosphatidylinositol anchored to the plasma membranes. The isolated cotton FLAs could be divided into four groups. Real-time quantitative reverse transcriptase polymerase chain reaction results indicated that the GhFLA genes are differentially expressed in cotton tissues. Three genes (GhFLA1/2/4) were specifically or predominantly expressed in 10 days post-anthesis fibers, and the transcripts of the other four genes (GhFLA6/14/15/18) were accumulated at relatively high levels in cotton fibers. Furthermore, expressions of the GhFLA genes are regulated in fiber development and in response to phytohormones and NaCl. The identification of cotton FLAs will facilitate the study of their roles in cotton fiber development and cell wall biogenesis.


New Phytologist | 2013

Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development

Deng-Di Li; Xiang-Mei Ruan; Jie Zhang; Ya-Jie Wu; Xiulan Wang; Xue-Bao Li

Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.


Journal of Experimental Botany | 2010

Three cotton genes preferentially expressed in flower tissues encode actin-depolymerizing factors which are involved in F-actin dynamics in cells

Xue-Bao Li; Dan Xu; Xiulan Wang; Geng-Qing Huang; Juan Luo; Deng-Di Li; Ze-Ting Zhang; Wen-Liang Xu

To investigate whether the high expression levels of actin-depolymerizing factor genes are related to pollen development, three GhADF genes (cDNAs) were isolated and characterized in cotton. Among them, GhADF6 and GhADF8 were preferentially expressed in petals, whereas GhADF7 displayed the highest level of expression in anthers, revealing its anther specificity. The GhADF7 transcripts in anthers reached its peak value at flowering, suggesting that its expression is developmentally-regulated in anthers. The GhADF7 gene including the promoter region was isolated from the cotton genome. To demonstrate the specificity of the GhADF7 promoter, the 5′-flanking region, including the promoter and 5′-untranslated region, was fused with the GUS gene. Histochemical assays demonstrated that the GhADF7:GUS gene was specifically expressed in pollen grains. When pollen grains germinated, very strong GUS staining was detected in the elongating pollen tube. Furthermore, overexpression of GhADF7 gene in Arabidopsis thaliana reduced the viable pollen grains and, consequently, transgenic plants were partially male-sterile. Overexpression of GhADF7 in fission yeast (Schizosaccharomyces pombe) altered the balance of actin depolymerization and polymerization, leading to the defective cytokinesis and multinucleate formation in the cells. Given all the above results together, it is proposed that the GhADF7 gene may play an important role in pollen development and germination.


Plant and Cell Physiology | 2013

A cotton gene encoding MYB-like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development

Yang Li; Jia Jiang; Man-Li Du; Lan Li; Xiulan Wang; Xue-Bao Li

In flowering plants, pollen development is a highly programmed process, in which a lot of genes are involved. In this study, a gene, designated as GhMYB24, encoding R2R3-MYB-like protein was isolated from cotton. GhMYB24 protein is localized in the cell nucleus and acts as a transcriptional activator. Northern blot analysis revealed that GhMYB24 transcripts were predominantly detected in anthers. It was further found that strong expression of GhMYB24 was mainly detected in pollen and was regulated during anther development by in situ hybridization. Overexpression of GhMYB24 in Arabidopsis caused flower malformation, shorter filaments, non-dehiscent anthers and fewer viable pollen grains. Further analysis revealed that the septum and stomium cells of anthers were not broken, and fewer fibrous bands were found in the endothecium cells in transgenic plants. A complementation test demonstrated that GhMYB24 was able to recover partially the male fertility of the myb21 myb24 double mutant. Expression levels of the genes involved in the phenylpropanoid biosynthetic pathway and reactive oxygen species homeostasis were altered in GhMYB24-overexpressing transgenic plants. Furthermore, the genes involved in jasmonate biosynthesis and its signaling pathway were up-regulated in the transgenic plants. Yeast two-hybrid assay indicated that GhMYB24 interacted with GhJAZ1/2 in cells. Taking the data together, our results suggest that GhMYB24 may play an important role in normal anther/pollen development.


Journal of Genetics and Genomics | 2007

Molecular characterization of four ADF genes differentially expressed in cotton.

Chengwei Zhang; Linlin Guo; Xiulan Wang; Hui Zhang; Haiyan Shi; Wenliang Xu; X. B. Li

Actin depolymerizing factor (ADF), highly conserved in all eukaryotic cells, is a low molecular mass of actin-binding protein, which plays a key role in modulating the polymerizing and depolymerizing of the actin filaments. Four cDNAs (designated GhADF2, GhADF3, GhADF4, and GhADF5, respectively) encoding ADF proteins were isolated from cotton (Gossypium hirsutum) fiber cDNA library. GhADF2 cDNA is 705 bp in length and deduces a protein with 139 amino acids. GhADF3 cDNA is 819 bp in length and encodes a protein of 139 amino acids. GhADF4 cDNA is 804 bp in length and deduces a protein with 143 amino acids. GhADF5 cDNA is 644 bp in length and encodes a protein of 141 amino acids. The molecular evolutionary relationship of these genes was analyzed by means of bioinformatics. GhADF2 is closely related to GhADF3 (99% identity) and PetADF2 (89% identity). GhADF4 is closely related to AtADF6 (78% identity), and GhADF5 is closely related to AtADF5 (83% identity). These results demonstrated that the plant ADF genes are highly conserved in structure. RT-PCR analysis showed that GhADF2 is predominantly expressed in fiber, whereas, GhADF5 is mainly expressed in cotyledons. On the other hand, it seems that GhADF3 and GhADF4 have no tissue specificity. Expression levels of different ADF genes may vary considerably in the same cell type, suggesting that they might be involved in regulating tissue development of cotton and the each ADF isoform may diverge to form the functional difference from the other ADFs during evolution.


Acta Biochimica et Biophysica Sinica | 2013

A cotton gene encoding a plasma membrane aquaporin is involved in seedling development and in response to drought stress

Jie Zhang; Deng-Di Li; Dan Zou; Fang Luo; Xiulan Wang; Yong Zheng; Xue-Bao Li

Cotton (Gossypium hirsutum), the most important textile crop worldwide, often encounters abiotic stress such as drought and waterlog during its growth season (summer), and its productivity is significantly limited by adverse factors. To investigate the molecular adaptation mechanisms of this plant species to abiotic stress, a gene encoding the plasma membrane intrinsic protein (PIP) was isolated in cotton, and designated as GhPIP2;7. Quantitative reverse transcriptase polymerase chain reaction analysis indicated that GhPIP2;7 was preferentially expressed in cotyledons and leaves, and its expression was up-regulated in leaves after drought treatments. Strong expression of GUS gene driven by GhPIP2;7 promoter was detected in leaves of 5- to 10-day-old transgenic Arabidopsis seedlings, but GUS activity gradually became weak as the seedlings further developed. GhPIP2;7 promoter activity was also remarkably induced by mannitol treatment. Furthermore, yeast cells over-expressing GhPIP2;7 displayed relatively higher drought tolerance, compared with controls. Over-expression of GhPIP2;7 in Arabidopsis enhanced plant tolerance to drought stress. Collectively, these data suggested that GhPIP2;7 gene may be involved in leaf development and in response to drought stress.


Molecular Biology | 2008

Characterization and expression analysis of two cotton genes encoding putative UDP-Glycosyltransferases

F. J. Tai; Xiulan Wang; Wenliang Xu; X. B. Li

UDP-Glycosyltransferases (UGT) are a large family of enzymes, which catalyze the transfer of a sugar from an activated sugar donor to an acceptor molecule. Both in plants and in mammals, they are important in the maintenance of cellular homeostasis. In this study, two genes (designated GhUGT1 and GhUGT2, respectively) encoding putative UGT were isolated from the cotton fiber cDNA library. The deduced proteins contain the signature sequences of plant UGTs in the C-terminal region. The GhUGT1 gene encodes a polypeptide of 457 amino acids, and displays homology at amino acid levels with the known glycosyltransferase genes. Sequence analysis revealed that the GhUGT2 merely encodes a small protein, as there is a nucleotide substitution that results in formation of a stop codon in its open reading frame. Real-time RT-PCR analysis revealed that the expression of GhUGT1 is higher in the fast growth tissues, such as in fibers and roots. GhUGT2 has also higher expression in roots, but with lower expression levels in fibers and other tissues. The results also showed that the expression of GhUGT1 is higher than GhUGT2. Further study showed that GhUGT1 and GhUGT2 expressions are regulated under osmotic stress, suggesting they may be involved in plants responding to osmotic stress.


Plant Physiology and Biochemistry | 2013

A cotton LIM domain-containing protein (GhWLIM5) is involved in bundling actin filaments.

Yang Li; Jia Jiang; Lan Li; Xiulan Wang; Na-Na Wang; Deng-Di Li; Xue-Bao Li

LIM-domain proteins play important roles in cellular processes in eukaryotes. In this study, a LIM protein gene, GhWLIM5, was identified in cotton. Quantitative RT-PCR analysis showed that GhWLIM5 was expressed widely in different cotton tissues and had a peak in expression during fiber elongation. GFP fluorescence assay revealed that cotton cells expressing GhWLIM5:eGFP fusion gene displayed a network distribution of eGFP fluorescence, suggesting that GhWLIM5 protein is mainly localized to the cell cytoskeleton. When GhWLIM5:eGFP transformed cells were stained with rhodamine-phalloidin there was consistent overlap in eGFP and rhodamine-palloidin signals, demonstrating that GhWLIM5 protein is colocalized with the F-actin cytoskeleton. In addition, high-speed cosedimentation assay verified that GhWLIM5 directly bound actin filaments, while low cosedimentation assay and microscopic observation indicated that GhWLIM5 bundled F-actin in vitro. Increasing amounts of GhWLIM5 protein were able to protect F-actin from depolymerization in vitro in the presence of Lat B (an F-actin depolymerizer). Our results contribute to a better understanding of the biochemical role of GhWLIM5 in modulating the dynamic F-actin network in cotton.


Journal of Integrative Plant Biology | 2013

Cotton AnnGh3 Encoding an Annexin Protein is Preferentially Expressed in Fibers and Promotes Initiation and Elongation of Leaf Trichomes in Transgenic Arabidopsis

Bing Li; Deng-Di Li; Jie Zhang; Hui Xia; Xiulan Wang; Ying Li; Xue-Bao Li

The annexins are a multifamily of calcium-regulated phospholipid-binding proteins. To investigate the roles of annexins in fiber development, four genes encoding putative annexin proteins were isolated from cotton (Gossypium hirsutum) and designated AnnGh3, AnnGh4, AnnGh5, and AnnGh6. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that AnnGh3, AnnGh4, and AnnGh5 were preferentially expressed in fibers, while the transcripts of AnnGh6 were predominantly accumulated in roots. During fiber development, the transcripts of AnnGh3/4/5 genes were mainly accumulated in rapidly elongating fibers. With fiber cells further developed, their expression activity was dramatically declined to a relatively low level. In situ hybridization results indicated that AnnGh3 and AnnGh5 were expressed in initiating fiber cells (0-2 DPA). Additionally, their expression in fibers was also regulated by phytohormones and [Ca(2+)]. Subcellular localization analysis discovered that AnnGh3 protein was localized in the cytoplasm. Overexpression of AnnGh3 in Arabidopsis resulted in a significant increase in trichome density and length on leaves of the transgenic plants, suggesting that AnnGh3 may be involved in fiber cell initiation and elongation of cotton.


Il Nuovo Cimento B | 1991

Entropy of nonsingular self-gravitating polytropes and their TOV equation

Z. Zhang; Xiulan Wang; H. Zhang; J. Shi

SummaryThis paper has discussed the behaviour of total entropy of self-gravitating polytropes in the nonsingular region and proved that the self-gravitating polytropes in the nonsingular region satisfy the equation of general relativistic hydrostatic equilibrium (TOV equation). We obtain that the magnitude order of total entropy of the polytropes with massM⊙ is (1040÷1041) erg·K−1 by calculating the nonsingular entropy of self-gravitating polytropes with state equationp=Kπγ, whereK≠−1, −3−2√20, Γ is a constant.

Collaboration


Dive into the Xiulan Wang's collaboration.

Top Co-Authors

Avatar

Xue-Bao Li

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Deng-Di Li

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wen-Liang Xu

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Geng-Qing Huang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Haiyan Shi

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Hong Wang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jia Jiang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jie Zhang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wenliang Xu

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

X. B. Li

Central China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge