Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xue-Bao Li is active.

Publication


Featured researches published by Xue-Bao Li.


Journal of Experimental Botany | 2012

The Brassica napus Calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling

Liang Chen; Feng Ren; Li Zhou; Qing-Qing Wang; Hui Zhong; Xue-Bao Li

A CBL-interacting protein kinase (CIPK) gene, BnCIPK6, was isolated in Brassica napus. Through yeast two-hybrid screening, 27 interaction partners (including BnCBL1) of BnCIPK6 were identified in Brassica napus. Interaction of BnCIPK6 and BnCBL1 was further confirmed by BiFC (bimolecular fluorescence complementation) in plant cells. Expressions of BnCIPK6 and BnCBL1 were significantly up-regulated by salt and osmotic stresses, phosphorous starvation, and abscisic acid (ABA). Furthermore, BnCIPK6 promoter activity was intensively induced in cotyledons and roots under NaCl, mannitol, and ABA treatments. Transgenic Arabidopsis plants with over-expressing BnCIPK6, its activated form BnCIPK6M, and BnCBL1 enhanced high salinity and low phosphate tolerance, suggesting that the functional interaction of BnCBL1 and BnCIPK6 may be important for the high salinity and phosphorous deficiency signalling pathways. In addition, activation of BnCIPK6 confers Arabidopsis plants hypersensitive to ABA. On the other hand, over-expression of BnCIPK6 in Arabidopsis cipk6 mutant completely rescued the low-phosphate-sensitive and ABA-insensitive phenotypes of this mutant, further suggesting that BnCIPK6 is involved in the plant response to high-salinity, phosphorous deficiency, and ABA signalling.


Plant Physiology | 2013

A Fasciclin-Like Arabinogalactan Protein, GhFLA1, Is Involved in Fiber Initiation and Elongation of Cotton

Geng-Qing Huang; Si-Ying Gong; Wen-Liang Xu; Wen Li; Peng Li; Chaojun Zhang; Deng-Di Li; Yong Zheng; Fuguang Li; Xue-Bao Li

Cotton fiber initiation and elongation may be affected by an arabinogalactan protein that alters the integrity of the primary cell wall matrix. Arabinogalactan proteins (AGPs) are involved in many aspects of plant development. In this study, biochemical and genetic approaches demonstrated that AGPs are abundant in developing fibers and may be involved in fiber initiation and elongation. To further investigate the role of AGPs during fiber development, a fasciclin-like arabinogalactan protein gene (GhFLA1) was identified in cotton (Gossypium hirsutum). Overexpression of GhFLA1 in cotton promoted fiber elongation, leading to an increase in fiber length. In contrast, suppression of GhFLA1 expression in cotton slowed down fiber initiation and elongation. As a result, the mature fibers of the transgenic plants were significantly shorter than those of the wild type. In addition, expression levels of GhFLAs and the genes related to primary cell wall biosynthesis were remarkably enhanced in the GhFLA1 overexpression transgenic fibers, whereas the transcripts of these genes were dramatically reduced in the fibers of GhFLA1 RNA interference plants. An immunostaining assay indicated that both AGP composition and primary cell wall composition were changed in the transgenic fibers. The levels of glucose, arabinose, and galactose were also altered in the primary cell wall of the transgenic fibers compared with those of the wild type. Together, our results suggested that GhFLA1 may function in fiber initiation and elongation by affecting AGP composition and the integrity of the primary cell wall matrix.


Journal of Experimental Botany | 2010

Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation

Ze-Ting Zhang; Ying Zhou; Yang Li; Su-Qiang Shao; Bing-Ying Li; Haiyan Shi; Xue-Bao Li

Proteins of the 14-3-3 family regulate a divergent set of signalling pathways in all eukaryotic organisms. In this study, several cDNAs encoding 14-3-3 proteins were isolated from a cotton fibre cDNA library. The Gh14-3-3 genes share high sequence homology at the nucleotide level in the coding region and at the amino acid level. Real-time quantitative RT-PCR analysis indicated that the expression of these Gh14-3-3 genes is developmentally regulated in fibres, and reached their peak at the stage of rapid cell elongation of fibre development. Furthermore, overexpression of Gh14-3-3a, Gh14-3-3e, and Gh14-3-3L in fission yeast promoted atypical longitudinal growth of the host cells. Yeast two-hybrid analysis revealed that the interaction between cotton 14-3-3 proteins is isoform selective. Through yeast two-hybrid screening, 38 novel interaction partners of the six 14-3-3 proteins (Gh14-3-3a, Gh14-3-3e, Gh14-3-3f, Gh14-3-3g, Gh14-3-3h, and Gh14-3-3L), which are involved in plant development, metabolism, signalling transduction, and other cellular processes, were identified in cotton fibres. Taking these data together, it is proposed that the Gh14-3-3 proteins may participate in regulation of fibre cell elongation. Thus, the results of this study provide novel insights into the 14-3-3 signalling related to fibre development of cotton.


PLOS ONE | 2012

Brassica napus PHR1 Gene Encoding a MYB-Like Protein Functions in Response to Phosphate Starvation

Feng Ren; Qian-Qian Guo; Li-Li Chang; Liang Chen; Cai-Zhi Zhao; Hui Zhong; Xue-Bao Li

Phosphorus (P) is one of the essential nutrient elements for plant development. In this work, BnPHR1 encoding a MYB transcription activator was isolated from Brassica napus. The characterization of nuclear localization and transcription activation ability suggest BnPHR1 is a transcriptional activator. The tissue expression and histochemical assay showed that BnPHR1 was predominantly expressed in roots and modulated by exogenous Pi in transcriptional level in roots under Pi deficiency conditions. Furthermore, overexpression of BnPHR1 in both Arabidopsis and B. napus remarkably enhanced the expression of the Pi-starvation-induced genes including ATPT2 and BnPT2 encoding the high-affinity Pi transporter. Additionally, BnPHR1 can in vivo bind the promoter sequence of ATPT2 and BnPT2 in both Arabidopsis and B. napus. Possibly, due to the activation of ATPT2 and BnPT2, or even more high-affinity Pi transporters, the excessive Pi was accumulated in transgenic plants, resulting in the crucially Pi toxicity to cells and subsequently retarding plant growth. Given the data together, BnPHR1, as crucial regulator, is regulated by exogenous Pi and directly activates those genes, which promote the uptake and homeostasis of Pi for plant growth.


Physiologia Plantarum | 2008

Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress

Geng-Qing Huang; Wen-Liang Xu; Siying Gong; Bing Li; Xiulan Wang; Dan Xu; Xue-Bao Li

Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), are usually involved in cell development in plants. To investigate the expression profiling as well as the role of FLA genes in fiber development, 19 GhFLA genes (cDNAs) were isolated from cotton (Gossypium hirsutum). Among them, 15 are predicted to be glycosylphosphatidylinositol anchored to the plasma membranes. The isolated cotton FLAs could be divided into four groups. Real-time quantitative reverse transcriptase polymerase chain reaction results indicated that the GhFLA genes are differentially expressed in cotton tissues. Three genes (GhFLA1/2/4) were specifically or predominantly expressed in 10 days post-anthesis fibers, and the transcripts of the other four genes (GhFLA6/14/15/18) were accumulated at relatively high levels in cotton fibers. Furthermore, expressions of the GhFLA genes are regulated in fiber development and in response to phytohormones and NaCl. The identification of cotton FLAs will facilitate the study of their roles in cotton fiber development and cell wall biogenesis.


Acta Biochimica et Biophysica Sinica | 2012

Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae

Haiyan Shi; Zhihao Liu; Li Zhu; Chaojun Zhang; Yun Chen; Ying Zhou; Fuguang Li; Xue-Bao Li

Dirigent super-family abounds throughout the plant kingdom, especially vascular plants. To elucidate the function of cotton (Gossypium hirsutum) DIR genes in lignification, two cDNAs (designated GhDIR1 and GhDIR2) encoding putative dirigent proteins were isolated from cotton cDNA libraries. Real-time quantitative reverse transcription-polymerase chain reaction analysis revealed that GhDIR1 transcript was preferentially accumulated in cotton hypocotyls, whereas GhDIR2 was predominantly expressed in cotton fibers. Overexpression of GhDIR1 gene resulted in an increase in lignin content in transgenic cotton plants, compared with that of wild type. Histochemical assay revealed that the transgenic plants displayed more widespread lignification than that of wild type in epidermis and vascular bundle. Furthermore, the transgenic cotton plants displayed more tolerance to the infection of Verticillium dahliae. Our data suggest that GhDIR1 may be involved in cotton lignification which can block the spread of fungal pathogen V. dahliae.


Plant Molecular Biology | 2010

Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling

Gang Li; Fu-Ju Tai; Yong Zheng; Juan Luo; Si-Ying Gong; Ze-Ting Zhang; Xue-Bao Li

Cotton (Gossypium hirsutum) often encounters abiotic stress such as drought and high salinity during its development, and its productivity is significantly limited by those adverse factors. To investigate the molecular adaptation mechanisms of this plant species to abiotic stress, we identified two genes encoding Di19-like Cys2/His2 zinc-finger proteins in cotton. GFP fluorescence assay demonstrated that GhDi19-1 and GhDi19-2 are two nuclear-localized proteins. Quantitative RT-PCR and Northern blot analyses revealed that mRNA accumulation of both GhDi19-1 and GhDi19-2 was significantly promoted by salinity and drought. Expression of GUS gene driven by the GhDi19-1 and GhDi19-2 promoters, respectively, was intensively induced in cotyledons under NaCl and mannitol stresses. Overexpression of GhDi19-1 and GhDi19-2 in Arabidopsis resulted in the seedlings displaying hypersensitivity to high salinity and abscisic acid (ABA). Seed germination and seedling growth of the transgenic Arabidopsis were dramatically inhibited by salinity and ABA, compared with wild type. In addition, expression levels of the ABA-responsive genes ABF3, ABF4,ABI5 and KIN1 were also remarkably altered in the transgenic plants under ABA treatment. Collectively, our results suggested that both GhDi19-1 and GhDi19-2 may be involved in response to salt/drought stress and ABA signaling during early stages of plant development.


New Phytologist | 2013

Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development

Deng-Di Li; Xiang-Mei Ruan; Jie Zhang; Ya-Jie Wu; Xiulan Wang; Xue-Bao Li

Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.


Gene | 2009

A cotton gene encodes a tonoplast aquaporin that is involved in cell tolerance to cold stress.

Deng-Di Li; Fu-Ju Tai; Ze-Ting Zhang; Yang Li; Yong Zheng; Yan-Feng Wu; Xue-Bao Li

To enhance the survival probability in cold stress, plant cells often increase their cold- and freezing-tolerance in response to low, nonfreezing temperatures by expressing some cold-related genes. In present study, a cotton gene encoding tonoplast intrinsic protein (TIP) was isolated from a cotton seedling cDNA library, and designated as GhTIP1;1. GFP fluorescent microscopy indicated that GhTIP1;1 protein was localized to the vacuolar membrane. Assay on GhTIP1;1 expression in Xenopus laevis oocytes demonstrated that GhTIP1;1 protein displayed water channel activity and facilitated water transport to the cells. At normal conditions, GhTIP1;1 transcripts were predominantly accumulated in roots and hypocotyls, but less abundance in other tissues of cotton. The GhTIP1;1 expression was dramatically up-regulated in cotyledons, but down-regulated in roots within a few hours after cotton seedlings were cold-treated. Overexpression of GhTIP1;1 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability, suggesting that the GhTIP1;1 protein is involved in cell freezing-tolerance.


Plant Cell Reports | 2012

Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress

Hui Zhong; Qian-Qian Guo; Liang Chen; Feng Ren; Qing-Qing Wang; Yong Zheng; Xue-Bao Li

AbstractThe NAC protein family is one of the novel classes of plant-specific transcription factors. In this study, two genes (BnNAC2 and BnNAC5) encoding the putative NAC transcription factors were identified in Brassica napus. Sequence analysis revealed that the deduced BnNAC proteins contain conserved N-terminal region (NAC domain) and highly divergent C-terminal domain. Yeast transactivation analysis showed that BnNAC2 could activate reporter gene expression, suggesting that BnNAC2 functions as a transcriptional activator. Quantitative RT-PCR analysis revealed that BnNAC2 was preferentially expressed in flowers, whereas BnNAC5 mRNAs accumulated at the highest level in stems. Further experimental results indicated that the two genes are high-salinity-, drought- and abscisic acid (ABA)-induced. Overexpression of BnNAC2 and BnNAC5 genes in yeast (Schizosaccharomyces pombe) remarkably inhibited the growth rate of the host cells, and enhanced the cells sensitive to high-salinity and osmotic stresses. Complementation test indicated that BnNAC5 could recover the defects such as salt-hypersensitivity and accelerated-leaf senescence of vni2 T-DNA insertion mutant. Several stress-responsive genes including COR15A and RD29A were enhanced in the complemented plants. These results suggest that BnNAC5 may perform the similar function of VNI2 in response to high-salinity stress and regulation of leaf aging. Key messageBnNAC2 and BnNAC5 are salt-, drought- and ABA-induced genes. Overexpression of BnNAC5 in Arabidopsisvni2 mutant recovered the mutant defects (salt-hypersensitivity and accelerated-leaf senescence) to the phenotype of wild type.

Collaboration


Dive into the Xue-Bao Li's collaboration.

Top Co-Authors

Avatar

Geng-Qing Huang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yang Li

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Deng-Di Li

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wen-Liang Xu

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Si-Ying Gong

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiulan Wang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yong Zheng

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wen Li

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Ying Zhou

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Ze-Ting Zhang

Central China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge