Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuyun Liu is active.

Publication


Featured researches published by Xiuyun Liu.


Journal of Cerebral Blood Flow and Metabolism | 2015

Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury

Xiuyun Liu; Marek Czosnyka; Joseph Donnelly; Karol P. Budohoski; Georgios V. Varsos; Nathalie Nasr; Ken M. Brady; Matthias Reinhard; Peter J. Hutchinson; Piotr Smielewski

The impulse response (IR)-based autoregulation index (ARI) allows for continuous monitoring of cerebral autoregulation using spontaneous fluctuations of arterial blood pressure (ABP) and cerebral flow velocity (FV). We compared three methods of autoregulation assessment in 288 traumatic brain injury (TBI) patients managed in the Neurocritical Care Unit: (1) IR-based ARI; (2) transfer function (TF) phase, gain, and coherence; and (3) mean flow index (Mx). Autoregulation index was calculated using the TF estimation (Welch method) and classified according to the original Tiecks’ model. Mx was calculated as a correlation coefficient between 10-second averages of ABP and FV using a moving 300-second data window. Transfer function phase, gain, and coherence were extracted in the very low frequency (VLF, 0 to 0.05 Hz) and low frequency (LF, 0.05 to 0.15 Hz) bandwidths. We studied the relationship between these parameters and also compared them with patients’ Glasgow outcome score. The calculations were performed using both cerebral perfusion pressure (CPP; suffix ‘c’) as input and ABP (suffix ‘a’). The result showed a significant relationship between ARI and Mx when using either ABP (r=−0.38, P<0.001) or CPP (r=−0.404, P<0.001) as input. Transfer function phase and coherence_a were significantly correlated with ARI_a and ARI_c (P<0.05). Only ARI_a, ARI_c, Mx_a, Mx_c, and phase_c were significantly correlated with patients’ outcome, with Mx_c showing the strongest association.


Medical Engineering & Physics | 2014

Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure–flow relation: The CARNet study☆

Aisha S.S. Meel-van den Abeelen; D.M. Simpson; Lotte J Y Wang; Cornelis H. Slump; Rong Zhang; Takashi Tarumi; Caroline A. Rickards; Stephen J. Payne; Georgios D. Mitsis; Kyriaki Kostoglou; Vasilis Z. Marmarelis; D. C. Shin; Yu-Chieh Tzeng; Philip N. Ainslie; Erik D. Gommer; Martin Müller; Alexander Caicedo Dorado; Peter Smielewski; Bernardo Yelicich; Corina Puppo; Xiuyun Liu; Marek Czosnyka; Cheng Yen Wang; Vera Novak; Jurgen A.H.R. Claassen

Transfer function analysis (TFA) is a frequently used method to assess dynamic cerebral autoregulation (CA) using spontaneous oscillations in blood pressure (BP) and cerebral blood flow velocity (CBFV). However, controversies and variations exist in how research groups utilise TFA, causing high variability in interpretation. The objective of this study was to evaluate between-centre variability in TFA outcome metrics. 15 centres analysed the same 70 BP and CBFV datasets from healthy subjects (n=50 rest; n=20 during hypercapnia); 10 additional datasets were computer-generated. Each centre used their in-house TFA methods; however, certain parameters were specified to reduce a priori between-centre variability. Hypercapnia was used to assess discriminatory performance and synthetic data to evaluate effects of parameter settings. Results were analysed using the Mann-Whitney test and logistic regression. A large non-homogeneous variation was found in TFA outcome metrics between the centres. Logistic regression demonstrated that 11 centres were able to distinguish between normal and impaired CA with an AUC>0.85. Further analysis identified TFA settings that are associated with large variation in outcome measures. These results indicate the need for standardisation of TFA settings in order to reduce between-centre variability and to allow accurate comparison between studies. Suggestions on optimal signal processing methods are proposed.


PLOS ONE | 2016

Continuous Multimodality Monitoring in Children after Traumatic Brain Injury-Preliminary Experience.

Adam Young; Joseph Donnelly; Marek Czosnyka; Ibrahim Jalloh; Xiuyun Liu; Marcel Aries; Helen M. Fernandes; Matthew R. Garnett; Piotr Smielewski; Peter J. Hutchinson; Shruti Agrawal

Introduction Multimodality monitoring is regularly employed in adult traumatic brain injury (TBI) patients where it provides physiologic and therapeutic insight into this heterogeneous condition. Pediatric studies are less frequent. Methods An analysis of data collected prospectively from 12 pediatric TBI patients admitted to Addenbrooke’s Hospital, Pediatric Intensive Care Unit (PICU) between August 2012 and December 2014 was performed. Patients’ intracranial pressure (ICP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) were monitored continuously using brain monitoring software ICM+®,) Pressure reactivity index (PRx) and ‘Optimal CPP’ (CPPopt) were calculated. Patient outcome was dichotomized into survivors and non-survivors. Results At 6 months 8/12 (66%) of the cohort survived the TBI. The median (±IQR) ICP was significantly lower in survivors 13.1±3.2 mm Hg compared to non-survivors 21.6±42.9 mm Hg (p = 0.003). The median time spent with ICP over 20 mm Hg was lower in survivors (9.7+9.8% vs 60.5+67.4% in non-survivors; p = 0.003). Although there was no evidence that CPP was different between survival groups, the time spent with a CPP close (within 10 mm Hg) to the optimal CPP was significantly longer in survivors (90.7±12.6%) compared with non-survivors (70.6±21.8%; p = 0.02). PRx provided significant outcome separation with median PRx in survivors being 0.02±0.19 compared to 0.39±0.62 in non-survivors (p = 0.02). Conclusion Our observations provide evidence that multi-modality monitoring may be useful in pediatric TBI with ICP, deviation of CPP from CPPopt, and PRx correlating with patient outcome.


Critical Care Medicine | 2016

Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study.

Marek Sykora; Marek Czosnyka; Xiuyun Liu; Joseph Donnelly; Nathalie Nasr; Jennifer Diedler; Francois Okoroafor; Peter J. Hutchinson; David K. Menon; Peter Smielewski

Objectives:Autonomic impairment after acute traumatic brain injury has been associated independently with both increased morbidity and mortality. Links between autonomic impairment and increased intracranial pressure or impaired cerebral autoregulation have been described as well. However, relationships between autonomic impairment, intracranial pressure, impaired cerebral autoregulation, and outcome remain poorly explored. Using continuous measurements of heart rate variability and baroreflex sensitivity we aimed to test whether autonomic markers are associated with functional outcome and mortality independently of intracranial variables. Further, we aimed to evaluate the relationships between autonomic functions, intracranial pressure, and cerebral autoregulation. Design:Retrospective analysis of a prospective database. Setting:Neurocritical care unit in a university hospital. Subjects:Sedated patients with severe traumatic brain injury. Measurements and Main Results:Waveforms of intracranial pressure and arterial blood pressure, baseline Glasgow Coma Scale and 6 months Glasgow Outcome Scale were recorded. Baroreflex sensitivity was assessed every 10 seconds using a modified cross-correlational method. Frequency domain analyses of heart rate variability were performed automatically every 10 seconds from a moving 300 seconds of the monitoring time window. Mean values of baroreflex sensitivity, heart rate variability, intracranial pressure, arterial blood pressure, cerebral perfusion pressure, and impaired cerebral autoregulation over the entire monitoring period were calculated for each patient. Two hundred and sixty-two patients with a median age of 36 years entered the analysis. The median admission Glasgow Coma Scale was 6, the median Glasgow Outcome Scale was 3, and the mortality at 6 months was 23%. Baroreflex sensitivity (adjusted odds ratio, 0.9; p = 0.02) and relative power of a high frequency band of heart rate variability (adjusted odds ratio, 1.05; p < 0.001) were individually associated with mortality, independently of age, admission Glasgow Coma Scale, intracranial pressure, pressure reactivity index, or cerebral perfusion pressure. Baroreflex sensitivity showed no correlation with intracranial pressure or cerebral perfusion pressure; the correlation with pressure reactivity index was strong in older patients (age, > 60 yr). The relative power of high frequency correlated significantly with intracranial pressure and cerebral perfusion pressure, but not with pressure reactivity index. The relative power of low frequency correlated significantly with pressure reactivity index. Conclusions:Autonomic impairment, as measured by heart rate variability and baroreflex sensitivity, is significantly associated with increased mortality after traumatic brain injury. These effects, though partially interlinked, seem to be independent of age, trauma severity, intracranial pressure, or autoregulatory status, and thus represent a discrete phenomenon in the pathophysiology of traumatic brain injury. Continuous measurements of heart rate variability and baroreflex sensitivity in the neuromonitoring setting of severe traumatic brain injury may carry novel pathophysiological and predictive information.


robotics and biomimetics | 2010

Study on fatigue feature from forearm SEMG signal based on wavelet analysis

Baikun Wan; Lifeng Xu; Yue Ren; Lu Wang; Shuang Qiu; Xiaojia Liu; Xiuyun Liu; Hongzhi Qi; Dong Ming; Weijie Wang

The aim of this paper is to estimate muscle fatigue by using wavelet analysis method in SEMG signal analysis. A signal acquisition system is designed and forearm muscle fatigue experiments under static and dynamic contractions are performed. The wavelet analysis method is proposed to group the wavelet coefficients of SEMG signal into high frequency-band (100Hz–350Hz) and low frequency-band (13–22Hz). The amplitude of SEMG signal is determined by calculating the root mean square, the amplitude of high frequency is correlated to the force level and the amplitude of low frequency band which is correlated to the muscle fatigue shows an upward trend. Then correlation coefficients between RMS of low frequency band and MF, RMS of low frequency band and MDF in static contraction as well the first time-varying parameter in dynamic contraction are calculated. Results demonstrate that the wavelet analysis method is an effective analysis tool in muscle fatigue evaluation and it lays a foundation for studying at the muscle fatigue in a variety of muscle contraction modes.2


Journal of Neurology, Neurosurgery, and Psychiatry | 2017

Impaired cerebral autoregulation: measurement and application to stroke

Li Xiong; Xiuyun Liu; Ty Shang; Peter Smielewski; Joseph Donnelly; Zhen Ni Guo; Yi Yang; Thomas Leung; Marek Czosnyka; Rong Zhang; Jia Liu; Ka Sing Wong

Cerebral autoregulation (CA) is a protective mechanism that maintains cerebral blood flow at a relatively constant level despite fluctuations of cerebral perfusion pressure or arterial blood pressure. It is a universal physiological mechanism that may involve myogenic, neural control as well as metabolic regulations of cerebral vasculature in response to changes in pressure or cerebral blood flow. Traditionally, CA has been represented by a sigmoid curve with a wide plateau between about 50 mm Hg and 170 mm Hg of steady-state changes in mean arterial pressure, defined as static CA. With the advent of transcranial Doppler, measurement of cerebral blood flow in response to transient changes in arterial pressure has been used to assess dynamic CA. However, a gold standard for measuring CA is not currently available. Stroke has been the leading cause of long-term adult disability throughout the world. A better understanding of CA and its response to pathological derangements can help assess the severity of stroke, guide management decisions, assess response to interventions and provide prognostic information. The objective of this review is to provide a comprehensive insight about physiology of autoregulation, measurement methodologies and clinical applications in stroke to help build a consensus for what should be included in an internationally agreed protocol for CA testing and monitoring, and to promote its translation into clinical bedside practice for stroke management.


Journal of Neural Engineering | 2009

A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index

Dong Ming; Yanru Bai; Xiuyun Liu; Hongzhi Qi; Longlong Cheng; Baikun Wan; Yong Hu; Yat-Wa Wong; Keith D. K. Luk; John C.Y. Leong

The gait outcome measures used in clinical trials of paraplegic locomotor training determine the effectiveness of improved walking function assisted by the functional electrical stimulation (FES) system. Focused on kinematic, kinetic or physiological changes of paraplegic patients, traditional methods cannot quantify the walking stability or identify the unstable factors of gait in real time. Up until now, the published studies on dynamic gait stability for the effective use of FES have been limited. In this paper, the walker tipping index (WTI) was used to analyze and process gait stability in FES-assisted paraplegic walking. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the frame of the walker. This system collected force information for the handle reaction vector between the patients upper extremities and the walker during the walking process; the information was then converted into walker tipping index data, which is an evaluation indicator of the patients walking stability. To demonstrate the potential usefulness of WTI in gait analysis, a preliminary clinical trial was conducted with seven paraplegic patients who were undergoing FES-assisted walking training and seven normal control subjects. The gait stability levels were quantified for these patients under different stimulation patterns and controls under normal walking with knee-immobilization through WTI analysis. The results showed that the walking stability in the FES-assisted paraplegic group was worse than that in the control subject group, with the primary concern being in the anterior-posterior plane. This new technique is practical for distinguishing useful gait information from the viewpoint of stability, and may be further applied in FES-assisted paraplegic walking rehabilitation.


Journal of Cerebral Blood Flow and Metabolism | 2017

Cerebral haemodynamics during experimental intracranial hypertension

Joseph Donnelly; Marek Czosnyka; Spencer Harland; Georgios V. Varsos; Danilo Cardim; Chiara Robba; Xiuyun Liu; Philip N. Ainslie; Peter Smielewski

Intracranial hypertension is a common final pathway in many acute neurological conditions. However, the cerebral haemodynamic response to acute intracranial hypertension is poorly understood. We assessed cerebral haemodynamics (arterial blood pressure, intracranial pressure, laser Doppler flowmetry, basilar artery Doppler flow velocity, and vascular wall tension) in 27 basilar artery-dependent rabbits during experimental (artificial CSF infusion) intracranial hypertension. From baseline (∼9 mmHg; SE 1.5) to moderate intracranial pressure (∼41 mmHg; SE 2.2), mean flow velocity remained unchanged (47 to 45 cm/s; p = 0.38), arterial blood pressure increased (88.8 to 94.2 mmHg; p < 0.01), whereas laser Doppler flowmetry and wall tension decreased (laser Doppler flowmetry 100 to 39.1% p < 0.001; wall tension 19.3 to 9.8 mmHg, p < 0.001). From moderate to high intracranial pressure (∼75 mmHg; SE 3.7), both mean flow velocity and laser Doppler flowmetry decreased (45 to 31.3 cm/s p < 0.001, laser Doppler flowmetry 39.1 to 13.3%, p < 0.001), arterial blood pressure increased still further (94.2 to 114.5 mmHg; p < 0.001), while wall tension was unchanged (9.7 to 9.6 mmHg; p = 0.35).This animal model of acute intracranial hypertension demonstrated two intracranial pressure-dependent cerebroprotective mechanisms: with moderate increases in intracranial pressure, wall tension decreased, and arterial blood pressure increased, while with severe increases in intracranial pressure, an arterial blood pressure increase predominated. Clinical monitoring of such phenomena could help individualise the management of neurocritical patients.


Archive | 2015

Prospective study on non-invasive assessment of ICP in head injured patients: comparison of four methods

Danilo Cardim; Chiara Robba; Joseph Donnelly; Michal Bohdanowicz; Bernhard Schmidt; Maxwell Damian; Georgios V. Varsos; Xiuyun Liu; Manuel Cabeleira; Gustavo Frigieri; Brenno Caetano Troca Cabella; Piotr Smielewski; Sergio Mascarenhas; Marek Czosnyka

DC is supported by a Cambridge Commonwealth, European & International Trust Scholarship, University of Cambridge. JD is supported by a Woolf Fisher Trust Scholarship. XL is supported by a Gates Cambridge Scholarship. GVV is supported by an A. G. Leventis Foundation Scholarship, and a Charter Studentship from St Edmund’s College, Cambridge. SM and GF are supported by the Pan-American Health Organization. DC and MC are partially supported by NIHR Brain Injury Healthcare Technology Co-operative, Cambridge, UK.


PLOS Medicine | 2017

Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: A retrospective study

Xiuyun Liu; Joseph Donnelly; Marek Czosnyka; Marcel Aries; Ken M. Brady; Danilo Cardim; Chiara Robba; Manuel Cabeleira; Dong Joo Kim; Christina Haubrich; Peter J. Hutchinson; Piotr Smielewski

Background After traumatic brain injury (TBI), the ability of cerebral vessels to appropriately react to changes in arterial blood pressure (pressure reactivity) is impaired, leaving patients vulnerable to cerebral hypo- or hyperperfusion. Although, the traditional pressure reactivity index (PRx) has demonstrated that impaired pressure reactivity is associated with poor patient outcome, PRx is sometimes erratic and may not be reliable in various clinical circumstances. Here, we introduce a more robust transform-based wavelet pressure reactivity index (wPRx) and compare its performance with the widely used traditional PRx across 3 areas: its stability and reliability in time, its ability to give an optimal cerebral perfusion pressure (CPPopt) recommendation, and its relationship with patient outcome. Methods and findings Five hundred and fifteen patients with TBI admitted in Addenbrooke’s Hospital, United Kingdom (March 23rd, 2003 through December 9th, 2014), with continuous monitoring of arterial blood pressure (ABP) and intracranial pressure (ICP), were retrospectively analyzed to calculate the traditional PRx and a novel wavelet transform-based wPRx. wPRx was calculated by taking the cosine of the wavelet transform phase-shift between ABP and ICP. A time trend of CPPopt was calculated using an automated curve-fitting method that determined the cerebral perfusion pressure (CPP) at which the pressure reactivity (PRx or wPRx) was most efficient (CPPopt_PRx and CPPopt_wPRx, respectively). There was a significantly positive relationship between PRx and wPRx (r = 0.73), and wavelet wPRx was more reliable in time (ratio of between-hour variance to total variance, wPRx 0.957 ± 0.0032 versus PRx and 0.949 ± 0.047 for PRx, p = 0.002). The 2-hour interval standard deviation of wPRx (0.19 ± 0.07) was smaller than that of PRx (0.30 ± 0.13, p < 0.001). wPRx performed better in distinguishing between mortality and survival (the area under the receiver operating characteristic [ROC] curve [AUROC] for wPRx was 0.73 versus 0.66 for PRx, p = 0.003). The mean difference between the patients’ CPP and their CPPopt was related to outcome for both calculation methods. There was a good relationship between the 2 CPPopts (r = 0.814, p < 0.001). CPPopt_wPRx was more stable than CPPopt_PRx (within patient standard deviation 7.05 ± 3.78 versus 8.45 ± 2.90; p < 0.001). Key limitations include that this study is a retrospective analysis and only compared wPRx with PRx in the cohort of patients with TBI. Prior prospective validation is required to better assess clinical utility of this approach. Conclusions wPRx offers several advantages to the traditional PRx: it is more stable in time, it yields a more consistent CPPopt recommendation, and, importantly, it has a stronger relationship with patient outcome. The clinical utility of wPRx should be explored in prospective studies of critically injured neurological patients.

Collaboration


Dive into the Xiuyun Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Ming

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Robba

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge