Xiwen Cai
North Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiwen Cai.
Genetics | 2011
Zhixia Niu; Daryl L. Klindworth; Timothy L. Friesen; Shiaoman Chao; Yue Jin; Xiwen Cai; Steven S. Xu
Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87–9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement.
Chromosome Research | 2008
Justin D. Faris; Steven S. Xu; Xiwen Cai; Timothy L. Friesen; Yue Jin
Stem rust is a serious disease of wheat that has caused historical epidemics, but it has not been a threat in recent decades in North America owing to the eradication of the alternative host and deployment of resistant cultivars. However, the recent emergence of Ug99 (or race TTKS) poses a threat to global wheat production because most currently grown wheat varieties are susceptible. In this study, we evaluated a durum wheat–Aegilops speltoides chromosome translocation line (DAS15) for reaction to Ug99 and six other races of stem rust, and used molecular and cytogenetic tools to characterize the translocation. DAS15 was resistant to all seven races of stem rust. Two durum–Ae. speltoides translocated chromosomes were detected in DAS15. One translocation involved the short arm, centromere, and a major portion of the long arm of Ae. speltoides chromosome 2S and a small terminal segment from durum chromosome arm 2BL. Thus, this translocated chromosome is designated T2BL-2SL•2SS. Cytogenetic mapping assigned the resistance gene(s) in DAS15 to the Ae. speltoides segment in T2BL-2SL•2SS. The Ae. speltoides segment in the other translocated chromosome did not harbour stem rust resistance. A comparison of DAS15 and the wheat stocks carrying the Ae. speltoides-derived resistance genes Sr32 and Sr39 indicated that stem rust resistance gene present in DAS15 is likely novel and will be useful for developing germplasm with resistance to Ug99. Efforts to reduce Ae. speltoides chromatin in T2BL-2SL•2SS are currently in progress.
Current Genomics | 2007
Xiwen Cai; Steven S Xu
Meiosis includes two successive divisions of the nucleus with one round of DNA replication and leads to the formation of gametes with half of the chromosomes of the mother cell during sexual reproduction. It provides a cytological basis for gametogenesis and nheritance in eukaryotes. Meiotic cell division is a complex and dynamic process that involves a number of molecular and cellular events, such as DNA and chromosome replication, chromosome pairing, synapsis and recombination, chromosome segregation, and cytokinesis. Meiosis maintains genome stability and integrity over sexual life cycles. On the other hand, meiosis generates genome variations in several ways. Variant meiotic recombination resulting from specific genome structures induces deletions, duplications, and other rearrangements within the genic and non-genic genomic regions and has been considered a major driving force for gene and genome evolution in nature. Meiotic abnormalities in chromosome segregation lead to chromosomally imbalanced gametes and aneuploidy. Meiotic restitution due to failure of the first or second meiotic division gives rise to unreduced gametes, which triggers polyploidization and genome expansion. This paper reviews research regarding meiosis-driven genome variation, including deletion and duplication of genomic regions, aneuploidy, and polyploidization, and discusses the effect of related meiotic events on genome variation and evolution in plants. Knowledge of various meiosis-driven genome variations provides insight into genome evolution and genetic variability in plants and facilitates plant genome research.
G3: Genes, Genomes, Genetics | 2012
Daryl L. Klindworth; Zhixia Niu; Shiaoman Chao; Timothy L. Friesen; Yue Jin; Justin D. Faris; Xiwen Cai; Steven S. Xu
The transfer of alien genes to crop plants using chromosome engineering has been attempted infrequently in tetraploid durum wheat (Triticum turgidum L. subsp. durum). Here, we report a highly efficient approach for the transfer of two genes conferring resistance to stem rust race Pgt-TTKSK (Ug99) from goatgrass (Aegilops speltoides) to tetraploid wheat. The durum line DAS15, carrying the stem rust resistance gene Sr47 derived from Ae. speltoides, was crossed, and backcrossed, to durum 5D(5B) aneuploids to induce homeologous pairing. After a final cross to ‘Rusty’ durum, allosyndetic recombinants were recovered. The Ae. speltoides chromosomal segment carrying Sr47 was found to have two stem rust resistance genes. One gene conditioning an infection type (IT) 2 was located in the same chromosomal region of 2BS as Sr39 and was assigned the temporary gene symbol SrAes7t. Based on ITs observed on a diverse set of rust races, SrAes7t may be the same as Sr39. The second gene conditioned an IT 0; and was located on chromosome arm 2BL. This gene retained the symbol Sr47 because it had a different IT and map location from other stem rust resistance genes derived from Ae. speltoides. Allosyndetic recombinant lines carrying each gene on minimal alien chromosomal segments were identified as were molecular markers distinguishing each alien segment. This study demonstrated that chromosome engineering of Ae. speltoides segments is feasible in tetraploid wheat. The Sr47 gene confers high-level and broad spectrum resistance to stem rust and should be very useful in efforts to control TTKSK.
Euphytica | 2005
Xiwen Cai; Peidu Chen; Steven S. Xu; Rebekah E. Oliver; X. Chen
Fusarium head blight (FHB) is a destructive disease of wheat worldwide. Sources of resistance to FHB are limited in wheat. Search for novel sources of effective resistance to this disease has been an urgent need in wheat breeding. Fusarium head blight resistance has been identified in relatives of wheat. Alien chromatin carrying FHB resistance genes has been incorporated into wheat through chromosome addition, substitution, and translocation. Relatives of wheat demonstrate a great potential to enhance resistance of wheat to FHB.
Chromosoma | 2010
Xiwen Cai; Steven S. Xu; Xianwen Zhu
Unreductional meiotic cell division (UMCD) generates unreduced gametes and leads to polyploidy. The tetraploid wheat “Langdon” (LDN) undergoes normal meiosis, but its polyhaploid undergoes UMCD. Here, we found that sister kinetochores oriented syntelically at meiosis I in LDN, but amphitelically in LDN polyhaploid and the interspecific hybrid of LDN with Aegilops tauschii. We also observed that sister centromere cohesion persisted until anaphase II in LDN, LDN polyhaploid, and the interspecific hybrid. Meiocytes with all chromosomes oriented amphitelically underwent UMCD in LDN polyhaploid, and the interspecific hybrid, suggesting the tension created by the amphitelic orientation of sister kinetochores and persistence of centromeric cohesion between sister chromatids at meiosis I contribute to the onset of UMCD. Most likely, some ploidy-regulated genes were responsible for kinetochore orientation at meiosis I in LDN and LDN-derived polyhaploids. In addition, we found sister kinetochores of synapsed chromosomes oriented syntelically, whereas asynapsed chromosomes oriented either amphitelically or syntelically. Thus, synapsis probably is another factor for the coordination of kinetochore orientation in LDN.
Chromosome Research | 2005
Steven S. Xu; Justin D. Faris; Xiwen Cai; Daryl L. Klindworth
Two durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] lines carrying the high-molecular-weight (HMW) glutenin subunits (GS) 1Dx5 + 1Dy10 encoded by Glu-D1d, L252 and S99B34, were characterized using fluorescent genomic in-situ hybridization (FGISH) and microsatellite markers. These two durum lines were derived from the crosses in which the common wheat (T. aestivum L.) ‘Len’ and durum wheat ‘Langdon’ (LDN) and ‘Renville’ were involved. FGISH patterns of the mitotic chromosomes indicated that these two durum lines have one pair of 1AS·1AL-1DL translocated chromosomes in which the terminal region of 1AL was replaced by a homoeologous segment of 1DL. The 1DL segment spans approximately 31% of the long arm of the translocated chromosome. Microsatellite marker analysis confirmed the 1AS·1AL-1DL translocation and determined the translocation breakpoint to be distal to Xgwm357 on 1AL. Seed storage proteins (GS and gliadins) were analysed in these two 1AS·1AL-1DL translocation lines and three sib lines (L092, S99B19 and S99B33) using SDS-PAGE and A-PAGE. The SDS-PAGE and A-PAGE profiles demonstrated that the two low yielding lines (L252 and S99B19) had the low-molecular-weight (LMW) −1 GS encoded by Glu-A3k and Glu-B3s and 1B-encoded gliadins from LDN, and the other three lines (L092, S99B33 and S99B34) with higher yield had LMW-2 GS and 1B-encoded gliadins from Renville, suggesting that undesirable genetic components from LDN might limit substantial improvement of yield. Thus, the translocation lines with 1Dx5 + 1Dy10 and LMW-2, which are associated with good bread-making and pasta qualities, respectively, in a good genetic background will be useful for developing durum cultivars with dual-purpose end-use. Results from this study demonstrate that the D-genome could play an important role in the genetic improvement of durum wheat and evolution of the A- and B-genomes in tetraploid wheat.
Chromosome Research | 2012
Rachel I. McArthur; Xianwen Zhu; Rebekah E. Oliver; Daryl L. Klindworth; Steven S. Xu; Robert W. Stack; Richard R.-C. Wang; Xiwen Cai
Thirteen common wheat “Chinese Spring” (CS)-Thinopyrum junceum addition lines and three common wheat “Fukuhokomuji”(Fuku)-Elymus rectisetus addition lines were characterized and verified as disomic additions of a Th. junceum or E. rectisetus chromosome in the wheat backgrounds by fluorescent genomic in situ hybridization. Another Fuku-E. rectisetus addition line, A1048, was found to contain multiple segregating E. rectisetus chromosomes. Seven partial CS-Th. junceum amphiploids were identified to combine 12–16 Th. junceum chromosomes with CS wheat chromosomes. The disomic addition lines AJDAj5, 7, 8, 9, and HD3508 were identified to contain a Th. junceum chromosome in homoeologous group 1. Two of them, AJDAj7 and AJDAj9, had the same Th. junceum chromosome. AJDAj2, 3, and 4 contained a Th. junceum chromosome in group 2, HD3505 in group 4, AJDAj6 and AJDAj11 in group 5, and AJDAj1 probably in group 6. The disomic addition lines A1026 and A1057 were identified to carry an E. rectisetus chromosome in group 1 and A1034 in group 5. E. rectisetus chromosomes in groups 1–6 were detected in A1048. The homoeologous group of the Th. junceum chromosome in HD3515 could not be determined in this study. Several Th. junceum and E. rectisetus chromosomes in the addition lines were found to contain genes for resistance to Fusarium head blight, tan spot, Stagonospora nodorum blotch, and stem rust (Ug99 races). Understanding of the homoeology of the Th. junceum and E. rectisetus chromosomes with wheat will facilitate utilization of the favorable genes on these alien chromosomes in wheat improvement.
Genetics | 2013
Zhao Liu; Dexing Wang; Jiuhuan Feng; Gerald J. Seiler; Xiwen Cai; C. C. Jan
The combination of a single cytoplasmic male-sterile (CMS) PET-1 and the corresponding fertility restoration (Rf) gene Rf1 is used for commercial hybrid sunflower (Helianthus annuus L., 2n = 34) seed production worldwide. A new CMS line 514A was recently developed with H. tuberosus cytoplasm. However, 33 maintainers and restorers for CMS PET-1 and 20 additional tester lines failed to restore the fertility of CMS 514A. Here, we report the discovery, characterization, and molecular mapping of a novel Rf gene for CMS 514A derived from an amphiploid (Amp H. angustifolius/P 21, 2n = 68). Progeny analysis of the male-fertile (MF) plants (2n = 35) suggested that this gene, designated Rf6, was located on a single alien chromosome. Genomic in situ hybridization (GISH) indicated that Rf6 was on a chromosome with a small segment translocation on the long arm in the MF progenies (2n = 34). Rf6 was mapped to linkage group (LG) 3 of the sunflower SSR map. Eight markers were identified to be linked to this gene, covering a distance of 10.8 cM. Two markers, ORS13 and ORS1114, were only 1.6 cM away from the gene. Severe segregation distortions were observed for both the fertility trait and the linked marker loci, suggesting the possibility of a low frequency of recombination or gamete selection in this region. This study discovered a new CMS/Rf gene system derived from wild species and provided significant insight into the genetic basis of this system. This will diversify the germplasm for sunflower breeding and facilitate understanding of the interaction between the cytoplasm and nuclear genes.
G3: Genes, Genomes, Genetics | 2013
Jiuhuan Feng; Zhao Liu; Xiwen Cai; Chao-Chien Jan
Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources.