Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiwen Lin is active.

Publication


Featured researches published by Xiwen Lin.


Human Molecular Genetics | 2013

Genome-wide Loss of 5-hmC is a Novel Epigenetic Feature of Huntington's Disease

Fengli Wang; Yeran Yang; Xiwen Lin; Jiu-Qiang Wang; Yong-Sheng Wu; Wenjuan Xie; Dandan Wang; Shu Zhu; You-Qi Liao; Qinmiao Sun; Yun-Gui Yang; Huai-Rong Luo; Caixia Guo; Chunsheng Han; Tie-Shan Tang

5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntingtons disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/β-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.


Nature Communications | 2013

Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis

Haiyun Gan; Lu Wen; Shangying Liao; Xiwen Lin; Tingting Ma; Jun Liu; Chun-Xiao Song; Min Wang; Chuan He; Chunsheng Han; Fuchou Tang

Little is known about how patterns of DNA methylation change during mammalian spermatogenesis. 5 hmC has been recognized as a stable intermediate of DNA demethylation with potential regulatory functions in the mammalian genome. However, its global pattern in germ cells has yet to be addressed. Here, we first conducted absolute quantification of 5 hmC in eight consecutive types of mouse spermatogenic cells using liquid chromatography-tandem mass spectrometry, and then mapped its distributions in various genomic regions using our chemical labeling and enrichment method coupled with deep sequencing. We found that 5 hmC mapped differentially to and changed dynamically in genomic regions related to expression regulation of protein-coding genes, piRNA precursor genes and repetitive elements. Moreover, 5 hmC content correlated with the levels of various transcripts quantified by RNA-seq. These results suggest that the highly ordered alterations of 5 hmC in the mouse genome are potentially crucial for the differentiation of spermatogenic cells.


Journal of Biological Chemistry | 2011

Global identification of SMAD2 target genes reveals a role for multiple co-regulatory factors in zebrafish early gastrulas.

Zhaoting Liu; Xiwen Lin; Zhaoping Cai; Zhuqiang Zhang; Chunsheng Han; Shunji Jia; Anming Meng; Qiang Wang

Nodal and Smad2/3 signals play pivotal roles in mesendoderm induction and axis determination during late blastulation and early gastrulation in vertebrate embryos. However, Smad2/3 direct target genes during those critical developmental stages have not been systematically identified. Here, through ChIP-chip assay, we show that the promoter/enhancer regions of 679 genes are bound by Smad2 in the zebrafish early gastrulas. Expression analyses confirm that a significant proportion of Smad2 targets are indeed subjected to Nodal/Smad2 regulation at the onset of gastrulation. The co-existence of DNA-binding sites of other transcription factors in the Smad2-bound regions allows the identification of well known Smad2-binding partners, such as FoxH1 and Lef1/β-catenin, as well as many previously unknown Smad2 partners, including Oct1 and Gata6, during embryogenesis. We demonstrate that Oct1 physically associates with and enhances the transcription and mesendodermal induction activity of Smad2, whereas Gata6 exerts an inhibitory role in Smad2 signaling and mesendodermal induction. Thus, our study systemically uncovers a large number of Smad2 targets in early gastrulas and suggests cooperative roles of Smad2 and other transcription factors in controlling target gene transcription, which will be valuable for studying regulatory cascades during germ layer formation and patterning of vertebrate embryos.


Molecular & Cellular Proteomics | 2013

Integrative Proteomic and Transcriptomic Analyses Reveal Multiple Post-transcriptional Regulatory Mechanisms of Mouse Spermatogenesis

Haiyun Gan; Tanxi Cai; Xiwen Lin; Yujian Wu; Xiuxia Wang; Fuquan Yang; Chunsheng Han

Mammalian spermatogenesis consists of many cell types and biological processes and serves as an excellent model for studying gene regulation at transcriptional and post-transcriptional levels. Many key proteins, miRNAs, and perhaps piRNAs have been shown to be involved in post-transcriptional regulation of spermatogenesis. However, a systematic method for assessing the relationship between protein and mRNA expression has not been available for studying mechanisms of post-transcriptional regulation. In the present study, we used the iTRAQ-based quantitative proteomic approach to identify 2008 proteins in mouse type A spermatogonia, pachytene spermatocytes, round spermatids, and elongative spermatids with high confidence. Of these proteins, 1194 made up four dynamically changing clusters, which reflect the mitotic amplification, meiosis, and post-meiotic development of germ cells. We identified five major regulatory mechanisms termed “transcript only,” “transcript degradation,” “translation repression,” “translation de-repression,” and “protein degradation” based on changes in protein level relative to changes in mRNA level at the mitosis/meiosis transition and the meiosis/post-meiotic development transition. We found that post-transcriptional regulatory mechanisms are related to the generation of piRNAs and antisense transcripts. Our results provide a valuable inventory of proteins produced during mouse spermatogenesis and contribute to elucidating the mechanisms of the post-transcriptional regulation of gene expression in mammalian spermatogenesis.


BMC Genomics | 2012

Mining and characterization of ubiquitin E3 ligases expressed in the mouse testis

Xiaojun Hou; Wei Zhang; Zhenyu Xiao; Haiyun Gan; Xiwen Lin; Shangying Liao; Chunsheng Han

BackgroundUbiquitin-mediated protein modification and degradation are believed to play important roles in mammalian spermatogenesis. The catalogues of ubiquitin activating enzymes, conjugating enzymes, and ligases (E3s) have been known for mammals such as mice and humans. However, a systematic characterization of E3s expressed during spermatogenesis has not been carried out.ResultsIn present study, we set out to mine E3s from the mouse genome and to characterize their expression pattern, subcellular localization, and enzymatic activities based on microarray data and biochemical assays. We identified 398 putative E3s belonging to the RING, U-box, and HECT subfamilies and found that most genes were conserved between mice and humans. We discovered that 73 of them were highly or specifically expressed in the testes based on the microarray expression data. We selected 10 putative E3 genes to examine their mRNA expression pattern, and several genes to study their subcellular localization and E3 ligase activity. RT-PCR results showed that all the selected genes were predominately expressed in the testis. Some putative E3s were localized in the cytoplasm while others were in both the cytoplasm and the nucleus. Moreover, all the selected proteins were enzymatically active as demonstrated by in vitro and in vivo assays.ConclusionsWe have identified a large number of putative E3s that are expressed during mouse spermatogenesis. Among these, a significant portion is highly or specifically expressed in the testis. Subcellular localization and enzymatic activity assays suggested that these E3s might execute diverse functions in mammalian spermatogenesis. Our results may serve as an initial guide to the field for further functional analysis.


Scientific Reports | 2016

Transcription Factor RFX2 Is a Key Regulator of Mouse Spermiogenesis.

Yujian Wu; Xiangjing Hu; Zhen Li; Min Wang; Sisi Li; Xiuxia Wang; Xiwen Lin; Shangying Liao; Zhuqiang Zhang; Xue Feng; Si Wang; Xiuhong Cui; Yan-ling Wang; Fei Gao; Rex A. Hess; Chunsheng Han

The regulatory factor X (RFX) family of transcription factors is crucial for ciliogenesis throughout evolution. In mice, Rfx1-4 are highly expressed in the testis where flagellated sperm are produced, but the functions of these factors in spermatogenesis remain unknown. Here, we report the production and characterization of the Rfx2 knockout mice. The male knockout mice were sterile due to the arrest of spermatogenesis at an early round spermatid step. The Rfx2-null round spermatids detached from the seminiferous tubules, forming large multinucleated giant cells that underwent apoptosis. In the mutants, formation of the flagellum was inhibited at its earliest stage. RNA-seq analysis identified a large number of cilia-related genes and testis-specific genes that were regulated by RFX2. Many of these genes were direct targets of RFX2, as revealed by chromatin immunoprecipitation-PCR assays. These findings indicate that RFX2 is a key regulator of the post-meiotic development of mouse spermatogenic cells.


Nucleic Acids Research | 2016

MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins.

Jian Chen; Tanxi Cai; Chunwei Zheng; Xiwen Lin; Guojun Wang; Shangying Liao; Xiuxia Wang; Haiyun Gan; Daoqin Zhang; Xiangjing Hu; Si Wang; Zhen Li; Yanmin Feng; Fuquan Yang; Chunsheng Han

Abstract miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified.


Stem cell reports | 2016

Retinoic Acid Is Sufficient for the In Vitro Induction of Mouse Spermatocytes

Si Wang; Xiuxia Wang; Longfei Ma; Xiwen Lin; Daoqin Zhang; Zhen Li; Yujian Wu; Chunwei Zheng; Xue Feng; Shangying Liao; Yanmin Feng; Jian Chen; Xiangjing Hu; Min Wang; Chunsheng Han

Summary Meiosis is the key step in gametogenesis. However, the mechanism of mammalian meiosis remains poorly understood due to the lack of an in vitro model. Here, we report that retinoic acid (RA) is sufficient for inducing leptotene/zygotene spermatocytes from cultured mouse spermatogonial stem cells. Multiple genes regulated by RA were identified by RNA sequencing. RA in combination with pup Sertoli cell co-culture resulted in a higher induction efficiency of 28%. Comparisons in the transcriptomic profiles of the induced spermatogenic cells and the isolated ones revealed the progressive induction of the germ cells. Using this model, we showed that Stra8, Agpat3, Fam57a, Wdr91, and Sox30 contributed to the proliferation and meiosis initiation differentially. In conclusion, we have efficiently generated spermatocytes using an RA/pup Sertoli cell-based in vitro model and provided proof-of-concept evidence for its application in identifying genes involved in mammalian meiosis.


RNA Biology | 2016

Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells

Xiwen Lin; Miao Han; Lu Cheng; Jian Chen; Zhuqiang Zhang; Ting Shen; Min Wang; Bo Wen; Ting Ni; Chunsheng Han

ABSTRACT Among all tissues of the metazoa, the transcritpome of testis displays the highest diversity and specificity. However, its composition and dynamics during spermatogenesis have not been fully understood. Here, we have identified 20,639 message RNAs (mRNAs), 7,168 long non-coding RNAs (lncRNAs) and 15,101 circular RNAs (circRNAs) in mouse spermatogenic cells, and found many of them were specifically expressed in testes. lncRNAs are significantly more testis-specific than mRNAs. At all stages, mRNAs are generally more abundant than lncRNAs, and linear transcripts are more abundant than circRNAs. We showed that the productions of circRNAs and piRNAs were highly regulated instead of random processes. Based on the results of a small-scale functional screening experiment using cultured mouse spermatogonial stem cells, many evolutionarily conserved lncRNAs are likely to play roles in spermatogenesis. Typical classes of transcription factor binding sites are enriched in the promoters of testis-specific m/lncRNA genes. Target genes of CREM and RFX2, 2 key TFs for spermatogenesis, were further validated by using ChIP-chip assays and RNA-seq on RFX2-knockout spermatogenic cells. Our results contribute to the current understanding of the transcriptomic complexity of spermatogenic cells and provide a valuable resource from which many candidate genes may be selected for further functional studies.


Development | 2017

Wt1 directs the lineage specification of sertoli and granulosa cells by repressing Sf1 expression.

Min Chen; Lianjun Zhang; Xiuhong Cui; Xiwen Lin; Yaqiong Li; Yaqing Wang; Yanbo Wang; Yan Qin; Dahua Chen; Chunsheng Han; Bin Zhou; Vicki Huff; Fei Gao

Supporting cells (Sertoli and granulosa) and steroidogenic cells (Leydig and theca-interstitium) are two major somatic cell types in mammalian gonads, but the mechanisms that control their differentiation during gonad development remain elusive. In this study, we found that deletion of Wt1 in the ovary after sex determination caused ectopic development of steroidogenic cells at the embryonic stage. Furthermore, differentiation of both Sertoli and granulosa cells was blocked when Wt1 was deleted before sex determination and most genital ridge somatic cells differentiated into steroidogenic cells in both male and female gonads. Further studies revealed that WT1 repressed Sf1 expression by directly binding to the Sf1 promoter region, and the repressive function was completely abolished when WT1 binding sites were mutated. This study demonstrates that Wt1 is required for the lineage specification of both Sertoli and granulosa cells by repressing Sf1 expression. Without Wt1, the expression of Sf1 was upregulated and the somatic cells differentiated into steroidogenic cells instead of supporting cells. Our study uncovers a novel mechanism of somatic cell differentiation during gonad development. Highlighted article: Genital ridge somatic cells have the potential to differentiate into supporting cells or steroidogenic cells depending on Wt1 gene expression.

Collaboration


Dive into the Xiwen Lin's collaboration.

Top Co-Authors

Avatar

Chunsheng Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shangying Liao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haiyun Gan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanmin Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunwei Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daoqin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiuxia Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Longfei Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangjing Hu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge