Xixi Zhou
University of New Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xixi Zhou.
Journal of Biological Chemistry | 2011
Xixi Zhou; Xi Sun; Karen L. Cooper; Feng Wang; Ke Jian Liu; Laurie G. Hudson
Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues.
Chemical Research in Toxicology | 2014
Xixi Zhou; Xi Sun; Charlotte Mobarak; A. Jay Gandolfi; Scott W. Burchiel; Laurie G. Hudson; Ke Jian Liu
Arsenic is an environmental toxin that enhances the carcinogenic effect of DNA-damaging agents, such as ultraviolet radiation and benzo[a]pyrene. Interaction with zinc finger proteins has been shown to be an important molecular mechanism for arsenic toxicity and cocarcinogenesis. Arsenicals such as arsenite, arsenic trioxide (ATO), and monomethylarsonous acid (MMA(III)) have been reported to interact with cysteine residues of zinc finger domains, but little is known about potential differences in their selectivity of interaction. Herein we analyzed the interaction of arsenite, MMA(III), and ATO with C2H2, C3H1, and C4 configurations of zinc fingers using UV–vis, cobalt, fluorescence, and mass spectrometry. We observed that arsenite and ATO both selectively bound to C3H1 and C4 zinc fingers, while MMA(III) interacted with all three configurations of zinc finger peptides. Structurally and functionally, arsenite and ATO caused conformational changes and zinc loss on C3H1 and C4 zinc finger peptide and protein, respectively, whereas MMA(III) changed conformation and displaced zinc on all three types of zinc fingers. The differential selectivity was also demonstrated in zinc finger proteins isolated from cells treated with these arsenicals. Our results show that trivalent inorganic arsenic compounds, arsenite and ATO, have the same selectivity and behavior when interacting with zinc finger proteins, while methylation removes the selectivity. These findings provide insights on the molecular mechanisms underlying the differential effects of inorganic versus methylated arsenicals, as well as the role of in vivo arsenic methylation in arsenic toxicity and carcinogenesis.
Toxicology and Applied Pharmacology | 2014
Xi Sun; Xixi Zhou; Libo Du; Wenlan Liu; Yang Liu; Laurie G. Hudson; Ke Jian Liu
Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure.
Free Radical Biology and Medicine | 2013
Feng Wang; Xixi Zhou; Wenlan Liu; Xi Sun; Chen Chen; Laurie G. Hudson; Ke Jian Liu
Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity.
Journal of Physical Chemistry A | 2014
Andrei V. Astashkin; Li Chen; Xixi Zhou; Huiying Li; Thomas L. Poulos; Ke Jian Liu; J. Guy Guillemette; Changjian Feng
The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca2+], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca2+]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca2+–CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic.
Journal of Biological Chemistry | 2015
Xixi Zhou; Karen L. Cooper; Xi Sun; Ke Jian Liu; Laurie G. Hudson
Background: Cysteine oxidation of zinc finger proteins plays an important role in protein function. Results: Arsenic binding selectively sensitizes C3H1/C4 zinc finger proteins to oxidation by ROS. Conclusion: Selectivity in arsenic binding to zinc finger motifs determines target proteins for oxidation by ROS. Significance: This work provides an example of how an environmental insult may alter protein oxidation profiles and redox signaling. Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation.
Biological Trace Element Research | 2015
Xixi Zhou; Scott W. Burchiel; Laurie G. Hudson; Ke Jian Liu
Diseases caused by occupational and environmental exposure to metals are a public health concern. The underlying molecular mechanisms of metal toxicity and carcinogenicity remain largely unknown. Over 130 scientists attended the 8th Conference on Metal Toxicity and Carcinogenesis, presenting their various research concerns and recent findings to stimulate interactions and collaborations among scientists in the field. Several major areas were emphasized, including human & population studies, molecular & cellular mechanisms, biological targets, epigenetic effects, metabolism, and metal mixtures. Here we summarize presentations at the conference sessions and highlight the attendees’ latest work published in this special issue of Biological Trace Element Research.
Oncotarget | 2016
Xixi Zhou; Karen L. Cooper; Juliana Huestis; Huan Xu; Scott W. Burchiel; Laurie G. Hudson; Ke Jian Liu
Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis.
Journal of Inorganic Biochemistry | 2016
Juliana Huestis; Xixi Zhou; Li Chen; Changjian Feng; Laurie G. Hudson; Ke Jian Liu
Inhibition of DNA repair is an established mechanism of arsenic co-carcinogenesis, and may be perpetuated by the binding of As(III) to key zinc finger (zf) DNA repair proteins. Validated molecular targets of As(III) include the first zinc finger domain of Poly (ADP-Ribose) Polymerase 1 (PARP-1), and the zinc finger domain of Xeroderma Pigmentosum Complementation Group A (XPA). In order to gain an understanding of the thermodynamic and kinetic parameters of the interaction of As(III) with these two zinc finger motifs, a fluorescence based approach was used to investigate Zn(II) and As(III) binding to synthetic model peptides corresponding to the zf motif of XPA and first zf motif of PARP-1, referred to in this paper as XPAzf and PARP-1zf-1, respectively. While XPAzf and PARP-1zf-1 display similar relative affinities for As(III), PARP-1zf-1 shows a potential kinetic advantage over XPAzf for As(III) binding, with a rate constant for the fast phase of formation of As(III)-PARP-1zf-1 approximately 4-fold higher than for As(III)-XPAzf. However, the binding of Zn(II) with either peptide proceeds at a faster rate than As(III). Notably, XPAzf demonstrates comparable affinities for binding both metals, while PARP-1zf-1 shows a slightly higher affinity for Zn(II), suggesting that the relative concentrations of Zn(II) and As(III) in a system may significantly influence which species predominates in zinc finger occupancy. These results provide insight into the mechanisms underlying interactions between zinc finger structures and As(III), and highlight the potential utility of zinc supplementation in mitigating adverse effects of As(III) on zinc finger functions in vivo.
Toxicology and Applied Pharmacology | 2017
Xiaofeng Ding; Xixi Zhou; Karen L. Cooper; Juliana Huestis; Laurie G. Hudson; Ke Jian Liu
&NA; Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)‐1, and inhibits PARP‐1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)‐induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP‐1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP‐1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP‐1 binding to chromatin as demonstrated by Chip‐on‐Western assays. Zinc effectively restored DNA binding of PARP‐1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite‐augmented direct UVR‐induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP‐1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite‐inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA‐associated NER pathway than for the PARP‐1‐dependent BER pathway. This study expands our understanding of arsenites role in DNA repair inhibition and co‐carcinogenesis. HighlightsArsenite suppresses the chromatin binding activity of XPA and PARP‐1.Arsenite has greater effect on retention of direct DNA damage such as CPDs and 6.4‐PPs.Arsenite inhibits DNA repair through both BER and NER pathways.