Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xosé Anxelu G. Morán is active.

Publication


Featured researches published by Xosé Anxelu G. Morán.


Nature Reviews Microbiology | 2009

Microbial growth in the polar oceans — role of temperature and potential impact of climate change

David L. Kirchman; Xosé Anxelu G. Morán; Hugh W. Ducklow

Heterotrophic bacteria are the most abundant organisms on the planet and dominate oceanic biogeochemical cycles, including that of carbon. Their role in polar waters has been enigmatic, however, because of conflicting reports about how temperature and the supply of organic carbon control bacterial growth. In this Analysis article, we attempt to resolve this controversy by reviewing previous reports in light of new data on microbial processes in the western Arctic Ocean and by comparing polar waters with low-latitude oceans. Understanding the regulation of in situ microbial activity may help us understand the response of the Arctic Ocean and Antarctic coastal waters over the coming decades as they warm and ice coverage declines.


Ecology | 2007

RESOURCE LIMITATION OF BACTERIAL PRODUCTION DISTORTS THE TEMPERATURE DEPENDENCE OF OCEANIC CARBON CYCLING

Ángel López-Urrutia; Xosé Anxelu G. Morán

Our view of the effects of temperature on bacterial carbon fluxes in the ocean has been confounded by the interplay of resource availability. Using an extensive compilation of cell-specific bacterial respiration (BRi) and production (BPi), we show that both physiological rates respond to changing temperature in a similar manner and follow the predictions of the metabolic theory of ecology. Their apparently different temperature dependence under warm, oligotrophic conditions is due to strong resource limitation of BP, but not of BRi. Thus, and despite previous preconception, bacterial growth efficiency (BGE = BPi/[BPi + BRi]) is not directly regulated by temperature, but by the availability of substrates for growth. We develop simple equations that can be used for the estimation of bacterial community metabolism from temperature, chlorophyll concentration, and bacterial abundance. Since bacteria are the greatest living planktonic biomass, our results challenge current understanding of how warming and shifts in ecosystem trophic state will modify oceanic carbon cycle feedbacks to climate change.


Microbial Ecology | 2002

Dissolved primary production and the strength of phytoplankton- bacterioplankton coupling in contrasting marine regions.

Xosé Anxelu G. Morán; Marta Estrada; Josep M. Gasol; Carlos Pedrós-Alió

We analyzed the strength of phytoplankton–bacterioplankton coupling by comparing the rate of particulate (PPP) and dissolved primary production (DPP) with bacterial carbon demand (BCD) in four contrasting marine regions: offshore and coastal waters of the Southern Ocean, a coastal area of the NE Atlantic, and a coastal–offshore transect in the NW Mediterranean. We measured bacterial heterotrophic production (BHP) and estimated BCD from a literature model. Average phytoplanktonic percent extracellular release [PER = DPP/(DPP + PPP)] was 18–20% in the Antarctic (offshore and coastal, respectively), 16% in the NW Mediterranean, and 7% in the NE Atlantic. A significant inverse relationship was found between PER and total system productivity with pooled data. On average BHP amounted to <5% of total primary production in all regions. However, the strength of phytoplankton–bacterioplankton coupling, estimated as the potential importance of DPP in meeting BCD, differed greatly in the four regions. DPP was highly correlated to BCD in offshore Antarctic waters and was sufficient to meet BCD. In contrast, BCD exceeded DPP and bore no significant relationship in the remaining regions. The data suggest that a strong dependence of bacteria on algal extracellular production is only expected in open-ocean environments isolated from coastal inputs of DOC.


Applied and Environmental Microbiology | 2011

Decrease in the Autotrophic-to-Heterotrophic Biomass Ratio of Picoplankton in Oligotrophic Marine Waters Due to Bottle Enclosure

Alejandra Calvo-Díaz; Laura Díaz-Pérez; Luis Ángel Suárez; Xosé Anxelu G. Morán; Eva Teira; Emilio Marañón

ABSTRACT We investigated the effects of bottle enclosure on autotrophic and heterotrophic picoplankton in North and South subtropical Atlantic oligotrophic waters, where the biomass and metabolism of the microbial community are dominated by the picoplankton size class. We measured changes in both autotrophic (Prochlorococcus, Synechococcus, and picoeukaryotes) and heterotrophic picoplankton biomass during three time series experiments and in 16 endpoint experiments over 24 h in light and dark treatments. Our results showed a divergent effect of bottle incubation on the autotrophic and heterotrophic components of the picoplankton community. The biomass of picophytoplankton showed, on average, a >50% decrease, mostly affecting the picoeukaryotes and, to a lesser extent, Prochlorococcus. In contrast, the biomass of heterotrophic bacteria remained constant or increased during the incubations. We also sampled 10 stations during a Lagrangian study in the North Atlantic subtropical gyre, which enabled us to compare the observed changes in the auto- to heterotrophic picoplankton biomass ratio (AB:HB ratio) inside the incubation bottles with those taking place in situ. While the AB:HB ratio in situ remained fairly constant during the Lagrangian study, it decreased significantly during the 24 h of incubation experiments. Thus, the rapid biomass changes observed in the incubations are artifacts resulting from bottle confinement and do not take place in natural conditions. Our results suggest that short (<1 day) bottle incubations in oligotrophic waters may lead to biased estimates of the microbial metabolic balance by underestimating primary production and/or overestimating bacterial respiration.


Applied and Environmental Microbiology | 2009

Empirical Leucine-to-Carbon Conversion Factors for Estimating Heterotrophic Bacterial Production: Seasonality and Predictability in a Temperate Coastal Ecosystem

Alejandra Calvo-Díaz; Xosé Anxelu G. Morán

ABSTRACT Leucine-to-carbon conversion factors (CFs) are needed for converting substrate incorporation into biomass production of heterotrophic bacteria. During 2006 we performed 20 dilution experiments for determining the spatiotemporal variability of empirical CFs in temperate Atlantic coastal waters. Values (0.49 to 1.92 kg C mol Leu−1) showed maxima in autumn to early winter and minima in summer. Spatially averaged CFs were significantly negatively correlated with in situ leucine incorporation rates (r = −0.91) and positively correlated with phosphate concentrations (r = 0.76). These relationships, together with a strong positive covariation between cell-specific leucine incorporation rates and carbon contents (r = 0.85), were interpreted as a strategy to maximize survival through protein synthesis and low growth rates under nutrient limitation (low CFs) until favorable conditions stimulate cell division relative to protein synthesis (high CFs). A multiple regression with in situ leucine incorporation rates and cellular carbon contents explained 96% of CF variance in our ecosystem, suggesting their potential prediction from more easily measurable routine variables. The use of the theoretical CF of 1.55 kg C mol Leu−1 would have resulted in a serious overestimation (73%) of annual bacterial production rates. Our results emphasize the need for considering the temporal scale in CFs for bacterial production studies.


Oceanography | 2009

Single-cell vs. bulk activity properties of coastal bacterioplankton over an annual cycle in a temperate ecosystem

Xosé Anxelu G. Morán; Alejandra Calvo-Díaz

The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60-100% for live, 30-84% for HNA and 0.2-12% for CTC+ cells. Leucine incorporation rates (2-153 pmol L(-1) h(-1)), specific growth rates (0.01-0.29 day(-1)) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.


FEMS Microbiology Ecology | 2015

Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

Tamara Megan Huete-Stauffer; Nestor Arandia-Gorostidi; Laura Díaz-Pérez; Xosé Anxelu G. Morán

Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6ºC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μ at the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 10(6) cells mL(-1) and generally covaried with μ but, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μ and K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site.


Marine Biology Research | 2013

Differential response of microbial plankton to nutrient inputs in oligotrophic versus mesotrophic waters of the North Atlantic

Sandra Martínez-García; Emilio Fernández; Alejandra Calvo-Díaz; Pedro Cermeño; Emilio Marañón; Xosé Anxelu G. Morán; Eva Teira

Abstract The effects of inorganic and/or organic (glucose+AAs) inputs on phytoplankton and heterotrophic bacteria were assessed, using a microcosm approach, in two contrasting marine environments: an open ocean oligotrophic site (North Atlantic Subtropical Gyre) and a highly productive coastal embayment (Ría de Vigo, NW Spain). Overall, changes in microbial plankton biomass were smaller than those of metabolic rates. The largest increases in primary production, bacterial production and community respiration were measured in response to mixed ( ) nutrient additions in both sites. Primary production responded to additions only in oligotrophic waters. The distinct autotrophic responses to nutrient additions measured in these environments were related to the different initial composition of phytoplankton populations and, presumably, also to differences in grazing pressures in both marine ecosystems. Heterotrophic bacteria were limited by organic substrates in both ecosystems, although mixed additions further enhanced bacterial growth in the subtropical gyre. The differences detected in bacterial responses to nutrient additions may be related to differences in nutrient limitations and to the prevalence of different relationships between components of the microbial food web (e.g. coupling between heterotrophic bacteria and phytoplankton and predation pressure) in both environments. We found a more relevant role of inorganic nutrients in controlling the efficiency of bacterial growth in oligotrophic regions as compared with highly productive systems. Our results suggest that organic matter inputs into both ecosystems might result in a tendency towards heterotrophy and in increases in bacterial growth efficiency.


Global Change Biology | 2010

Increasing importance of small phytoplankton in a warmer ocean

Xosé Anxelu G. Morán; Ángel López-Urrutia; Alejandra Calvo-Díaz; William K. W. Li


Aquatic Microbial Ecology | 2006

Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay

Alejandra Calvo-Díaz; Xosé Anxelu G. Morán

Collaboration


Dive into the Xosé Anxelu G. Morán's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep M. Gasol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Estrada

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Tamara Megan Huete-Stauffer

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Pedrós-Alió

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge