Alejandra Calvo-Díaz
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandra Calvo-Díaz.
Progress in Oceanography | 2012
María Huete-Ortega; Pedro Cermeño; Alejandra Calvo-Díaz; Emilio Marañón
The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates and cell abundance across a cell volume range of over six orders of magnitude in tropical and subtropical waters of the Atlantic Ocean. We found an approximately isometric relationship between carbon fixation rate and cell size (mean slope value: 1.16; range: 1.03–1.32), negating the idea that Kleibers law is applicable to unicellular autotrophic protists. On the basis of the scaling of individual resource use with cell size, we predicted a reciprocal relationship between the size-scalings of phytoplankton metabolic rate and abundance. This prediction was confirmed by the observed slopes of the relationship between phytoplankton abundance and cell size, which have a mean value of −1.15 (range: −1.29 to −0.97), indicating that the size abundance distribution largely results from the size-scaling of metabolic rate. Our results imply that the total energy processed by carbon fixation is constant along the phytoplankton size spectrum in near steady-state marine ecosystems.
Applied and Environmental Microbiology | 2011
Alejandra Calvo-Díaz; Laura Díaz-Pérez; Luis Ángel Suárez; Xosé Anxelu G. Morán; Eva Teira; Emilio Marañón
ABSTRACT We investigated the effects of bottle enclosure on autotrophic and heterotrophic picoplankton in North and South subtropical Atlantic oligotrophic waters, where the biomass and metabolism of the microbial community are dominated by the picoplankton size class. We measured changes in both autotrophic (Prochlorococcus, Synechococcus, and picoeukaryotes) and heterotrophic picoplankton biomass during three time series experiments and in 16 endpoint experiments over 24 h in light and dark treatments. Our results showed a divergent effect of bottle incubation on the autotrophic and heterotrophic components of the picoplankton community. The biomass of picophytoplankton showed, on average, a >50% decrease, mostly affecting the picoeukaryotes and, to a lesser extent, Prochlorococcus. In contrast, the biomass of heterotrophic bacteria remained constant or increased during the incubations. We also sampled 10 stations during a Lagrangian study in the North Atlantic subtropical gyre, which enabled us to compare the observed changes in the auto- to heterotrophic picoplankton biomass ratio (AB:HB ratio) inside the incubation bottles with those taking place in situ. While the AB:HB ratio in situ remained fairly constant during the Lagrangian study, it decreased significantly during the 24 h of incubation experiments. Thus, the rapid biomass changes observed in the incubations are artifacts resulting from bottle confinement and do not take place in natural conditions. Our results suggest that short (<1 day) bottle incubations in oligotrophic waters may lead to biased estimates of the microbial metabolic balance by underestimating primary production and/or overestimating bacterial respiration.
Proceedings of the Royal Society B: Biological Sciences | 2015
Xosé Anxelu G. Morán; Laura Alonso-Sáez; Enrique Nogueira; Hugh W. Ducklow; Natalia González; Ángel López-Urrutia; Laura Díaz-Pérez; Alejandra Calvo-Díaz; Nestor Arandia-Gorostidi; Tamara Megan Huete-Stauffer
Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria. Over this relatively short period, we also found that bacterioplankton cells were significantly smaller, a trend that is consistent with the hypothesized temperature-driven decrease in body size. Although decadal cell shrinking was observed for both groups, it was only LNA cells that were strongly coherent, with ecological theories linking temperature, abundance and individual size on both the seasonal and interannual scale. We explain this finding because, relative to their HNA counterparts, marine LNA bacteria are less diverse, dominated by members of the SAR11 clade. Temperature manipulation experiments in 2012 confirmed a direct effect of warming on bacterial size. Concurrent with rising temperatures in spring, significant decadal trends of increasing standing stocks (3% per year) accompanied by decreasing mean cell size (−1% per year) suggest a major shift in community structure, with a larger contribution of LNA bacteria to total biomass. The increasing prevalence of these typically oligotrophic taxa may severely impact marine food webs and carbon fluxes by an overall decrease in the efficiency of the biological pump.
Applied and Environmental Microbiology | 2009
Alejandra Calvo-Díaz; Xosé Anxelu G. Morán
ABSTRACT Leucine-to-carbon conversion factors (CFs) are needed for converting substrate incorporation into biomass production of heterotrophic bacteria. During 2006 we performed 20 dilution experiments for determining the spatiotemporal variability of empirical CFs in temperate Atlantic coastal waters. Values (0.49 to 1.92 kg C mol Leu−1) showed maxima in autumn to early winter and minima in summer. Spatially averaged CFs were significantly negatively correlated with in situ leucine incorporation rates (r = −0.91) and positively correlated with phosphate concentrations (r = 0.76). These relationships, together with a strong positive covariation between cell-specific leucine incorporation rates and carbon contents (r = 0.85), were interpreted as a strategy to maximize survival through protein synthesis and low growth rates under nutrient limitation (low CFs) until favorable conditions stimulate cell division relative to protein synthesis (high CFs). A multiple regression with in situ leucine incorporation rates and cellular carbon contents explained 96% of CF variance in our ecosystem, suggesting their potential prediction from more easily measurable routine variables. The use of the theoretical CF of 1.55 kg C mol Leu−1 would have resulted in a serious overestimation (73%) of annual bacterial production rates. Our results emphasize the need for considering the temporal scale in CFs for bacterial production studies.
Oceanography | 2009
Xosé Anxelu G. Morán; Alejandra Calvo-Díaz
The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60-100% for live, 30-84% for HNA and 0.2-12% for CTC+ cells. Leucine incorporation rates (2-153 pmol L(-1) h(-1)), specific growth rates (0.01-0.29 day(-1)) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.
Marine Biology Research | 2013
Sandra Martínez-García; Emilio Fernández; Alejandra Calvo-Díaz; Pedro Cermeño; Emilio Marañón; Xosé Anxelu G. Morán; Eva Teira
Abstract The effects of inorganic and/or organic (glucose+AAs) inputs on phytoplankton and heterotrophic bacteria were assessed, using a microcosm approach, in two contrasting marine environments: an open ocean oligotrophic site (North Atlantic Subtropical Gyre) and a highly productive coastal embayment (Ría de Vigo, NW Spain). Overall, changes in microbial plankton biomass were smaller than those of metabolic rates. The largest increases in primary production, bacterial production and community respiration were measured in response to mixed ( ) nutrient additions in both sites. Primary production responded to additions only in oligotrophic waters. The distinct autotrophic responses to nutrient additions measured in these environments were related to the different initial composition of phytoplankton populations and, presumably, also to differences in grazing pressures in both marine ecosystems. Heterotrophic bacteria were limited by organic substrates in both ecosystems, although mixed additions further enhanced bacterial growth in the subtropical gyre. The differences detected in bacterial responses to nutrient additions may be related to differences in nutrient limitations and to the prevalence of different relationships between components of the microbial food web (e.g. coupling between heterotrophic bacteria and phytoplankton and predation pressure) in both environments. We found a more relevant role of inorganic nutrients in controlling the efficiency of bacterial growth in oligotrophic regions as compared with highly productive systems. Our results suggest that organic matter inputs into both ecosystems might result in a tendency towards heterotrophy and in increases in bacterial growth efficiency.
Environmental Microbiology | 2018
Xosé Anxelu G. Morán; Alejandra Calvo-Díaz; Nestor Arandia-Gorostidi; Tamara Megan Huete-Stauffer
Recent work suggests that temperature effects on marine heterotrophic bacteria are strongly seasonal, but few attempts have been made to concurrently assess them across trophic levels. Here, we estimated the temperature sensitivities (using activation energies, E) of autotrophic and heterotrophic microbial plankton net growth rates over an annual cycle in NE Atlantic coastal waters. Phytoplankton grew in winter and late autumn (0.41 ± 0.16 SE d-1 ) and decayed in the remaining months (-0.42 ± 0.10 d-1 ). Heterotrophic microbes shared a similar seasonality, with positive net growth for bacteria (0.14-1.48 d-1 ), while nanoflagellates had higher values (> 0.4 d-1 ) in winter and spring relative to the rest of the year (-0.46 to 0.29 d-1 ). Net growth rates activation energies showed similar dynamics in the three groups (-1.07 to 1.51 eV), characterized by maxima in winter, minima in summer and resumed increases in autumn. Microbial plankton E values were significantly correlated with nitrate concentrations as a proxy for nutrient availability. Nutrient-sufficiency (i.e., > 1 μmol l-1 nitrate) resulted in significantly higher activation energies of phytoplankton and heterotrophic nanoflagellates relative to nutrient-limited conditions. We suggest that only within spatio-temporal windows of both moderate bottom-up and top-down controls will temperature have a major enhancing effect on microbial growth.
Global Change Biology | 2010
Xosé Anxelu G. Morán; Ángel López-Urrutia; Alejandra Calvo-Díaz; William K. W. Li
Aquatic Microbial Ecology | 2006
Alejandra Calvo-Díaz; Xosé Anxelu G. Morán
Limnology and Oceanography | 2010
Emilio Marañén; Ana Belén Méndez Fernández; Beatriz Mouriño-Carballido; Sandra Martínez-García; Eva Teira; Pedro Cermeño; Paloma Chouciño; María Huete-Ortega; Emilio Fernández; Alejandra Calvo-Díaz; Xosé Anxelu G. Morán; Antonio Bode; Enrique Moreno-Ostos; Marta M. Varela; Matthew D. Patey; Eric P. Achterberg