Xu Tan
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xu Tan.
Nature | 2007
Xu Tan; Luz Irina Calderon-Villalobos; Michal Sharon; Changxue Zheng; Carol V. Robinson; Mark Estelle; Ning Zheng
Auxin is a pivotal plant hormone that controls many aspects of plant growth and development. Perceived by a small family of F-box proteins including transport inhibitor response 1 (TIR1), auxin regulates gene expression by promoting SCF ubiquitin-ligase-catalysed degradation of the Aux/IAA transcription repressors, but how the TIR1 F-box protein senses and becomes activated by auxin remains unclear. Here we present the crystal structures of the Arabidopsis TIR1–ASK1 complex, free and in complexes with three different auxin compounds and an Aux/IAA substrate peptide. These structures show that the leucine-rich repeat domain of TIR1 contains an unexpected inositol hexakisphosphate co-factor and recognizes auxin and the Aux/IAA polypeptide substrate through a single surface pocket. Anchored to the base of the TIR1 pocket, auxin binds to a partially promiscuous site, which can also accommodate various auxin analogues. Docked on top of auxin, the Aux/IAA substrate peptide occupies the rest of the TIR1 pocket and completely encloses the hormone-binding site. By filling in a hydrophobic cavity at the protein interface, auxin enhances the TIR1–substrate interactions by acting as a ‘molecular glue’. Our results establish the first structural model of a plant hormone receptor.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Danny M. Chou; Britt Adamson; Noah Dephoure; Xu Tan; Amanda C. Nottke; Kristen E. Hurov; Steven P. Gygi; Monica P. Colaiácovo; Stephen J. Elledge
Many proteins that respond to DNA damage are recruited to DNA lesions. We used a proteomics approach that coupled isotopic labeling with chromatin fractionation and mass spectrometry to uncover proteins that associate with damaged DNA, many of which are involved in DNA repair or nucleolar function. We show that polycomb group members are recruited by poly(ADP ribose) polymerase (PARP) to DNA lesions following UV laser microirradiation. Loss of polycomb components results in IR sensitivity of mammalian cells and Caenorhabditis elegans. PARP also recruits two components of the repressive nucleosome remodeling and deacetylase (NuRD) complex, chromodomain helicase DNA-binding protein 4 (CHD4) and metastasis associated 1 (MTA1), to DNA lesions. PARP plays a role in removing nascent RNA and elongating RNA polymerase II from sites of DNA damage. We propose that PARP sets up a transient repressive chromatin structure at sites of DNA damage to block transcription and facilitate DNA repair.
Nature Chemical Biology | 2012
Luz Irina A. Calderón Villalobos; Sarah Lee; César Augusto F. de Oliveira; Anthony Ivetac; Wolfgang Brandt; Lynne Armitage; Laura B. Sheard; Xu Tan; Geraint Parry; Haibin Mao; Ning Zheng; Richard M. Napier; Stefan Kepinski; Mark Estelle
The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding to the F-box protein TIR1 and promotes the degradation of the Aux/IAA transcriptional repressors. Here, we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity appears to be largely determined by the Aux/IAA. As there are 6 TIR1/AFBs and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin sensing properties. We also demonstrate that the AFB5-Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Ken-ichiro Hayashi; Xu Tan; Ning Zheng; Tatsuya Hatate; Yoshio Kimura; Stefan Kepinski; Hiroshi Nozaki
The regulation of gene expression by the hormone auxin is a crucial mechanism in plant development. We have shown that the Arabidopsis F-box protein TIR1 is a receptor for auxin, and our recent structural work has revealed the molecular mechanism of auxin perception. TIR1 is the substrate receptor of the ubiquitin–ligase complex SCFTIR1. Auxin binding enhances the interaction between TIR1 and its substrates, the Aux/IAA repressors, thereby promoting the ubiquitination and degradation of Aux/IAAs, altering the expression of hundreds of genes. TIR1 is the prototype of a new class of hormone receptor and the first example of an SCF ubiquitin-ligase modulated by a small molecule. Here, we describe the design, synthesis, and characterization of a series of auxin agonists and antagonists. We show these molecules are specific to TIR1-mediated events in Arabidopsis, and their mode of action in binding to TIR1 is confirmed by x-ray crystallographic analysis. Further, we demonstrate the utility of these probes for the analysis of TIR1-mediated auxin signaling in the moss Physcomitrella patens. Our work not only provides a useful tool for plant chemical biology but also demonstrates an example of a specific small-molecule inhibitor of F-box protein–substrate recruitment. Substrate recognition and subsequent ubiquitination by SCF-type ubiquitin ligases are central to many cellular processes in eukaryotes, and ubiquitin-ligase function is affected in several human diseases. Our work supports the idea that it may be possible to design small-molecule agents to modulate ubiquitin-ligase function therapeutically.
Nature Biotechnology | 2012
Xu Tan; Long Hu; Lovelace J. Luquette; Geng Gao; Yifang Liu; Hongjing Qu; Ruibin Xi; Zhi John Lu; Peter J. Park; Stephen J. Elledge
The systematic identification of effective drug combinations has been hindered by the unavailability of methods that can explore the large combinatorial search space of drug interactions. Here we present multiplex screening for interacting compounds (MuSIC), which expedites the comprehensive assessment of pairwise compound interactions. We examined ∼500,000 drug pairs from 1,000 US Food and Drug Administration (FDA)-approved or clinically tested drugs and identified drugs that synergize to inhibit HIV replication. Our analysis reveals an enrichment of anti-inflammatory drugs in drug combinations that synergize against HIV. As inflammation accompanies HIV infection, these findings indicate that inhibiting inflammation could curb HIV propagation. Multiple drug pairs identified in this study, including various glucocorticoids and nitazoxanide (NTZ), synergize by targeting different steps in the HIV life cycle. MuSIC can be applied to a wide variety of disease-relevant screens to facilitate efficient identification of compound combinations.
Cell Research | 2017
Chao Jiang; Miao Mei; Bin Li; Xiurui Zhu; Wenhong Zu; Yujie Tian; Qiannan Wang; Yong Guo; Yizhou Dong; Xu Tan
A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo
Nano Letters | 2015
Bin Li; Xiao Luo; Binbin Deng; Junfeng Wang; David W. McComb; Yimin Shi; Karin Gaensler; Xu Tan; Amy L. Dunn; Bryce A. Kerlin; Yizhou Dong
Systemic delivery of mRNA-based therapeutics remains a challenging issue for preclinical and clinical studies. Here, we describe new lipid-like nanoparticles (TT-LLNs) developed through an orthogonal array design, which demonstrates improved delivery efficiency of mRNA encoding luciferase in vitro by over 350-fold with significantly reduced experimental workload. One optimized TT3 LLN, termed O-TT3 LLNs, was able to restore the human factor IX (hFIX) level to normal physiological values in FIX-knockout mice. Consequently, these mRNA based nanomaterials merit further development for therapeutic applications.
Nature Genetics | 2016
Lin Z; Li S; Feng C; Yang S; Wang H; Ma D; Zhang J; Gou M; Bu D; Zhang T; Kong X; Xinyue Wang; Sarig O; Ren Y; Dai L; Liu H; Li F; Hu Y; Padalon-Brauch G; Vodo D; Zhou F; Ting Chen; Deng H; Sprecher E; Yang Y; Xu Tan
Skin integrity is essential for protection from external stress and trauma. Defects in structural proteins such as keratins cause skin fragility, epitomized by epidermolysis bullosa (EB), a life-threatening disorder. Here we show that dominant mutations of KLHL24, encoding a cullin 3-RBX1 ubiquitin ligase substrate receptor, cause EB. We have identified start-codon mutations in the KLHL24 gene in five patients with EB. These mutations lead to truncated KLHL24 protein lacking the initial 28 amino acids (KLHL24-ΔN28). KLHL24-ΔN28 is more stable than its wild-type counterpart owing to abolished autoubiquitination. We have further identified keratin 14 (KRT14) as a KLHL24 substrate and found that KLHL24-ΔN28 induces excessive ubiquitination and degradation of KRT14. Using a knock-in mouse model, we have confirmed that the Klhl24 mutations lead to stabilized Klhl24-ΔN28 and cause Krt14 degradation. Our findings identify a new disease-causing mechanism due to dysregulation of autoubiquitination and open new avenues for the treatment of related disorders.
Genome Medicine | 2014
Xu Tan; Stephen J. Elledge
Reactivating latent HIV is key to depleting the virus reservoir in AIDS patients. A recent paper has described the rationale for and discovery of a new class of drugs - transcriptional noise enhancers - that can synergize with conventional transcription activators to more effectively reactivate latently infected T cells. As well as describing a promising new strategy in the bid to find a cure for AIDS, this study more broadly highlights the utility of exploring drug combinations in treatment of human disease.
Cold Spring Harbor Perspectives in Biology | 2010
Luz Irina Calderon-Villalobos; Xu Tan; Ning Zheng; Mark Estelle