Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where an-Fu Xu is active.

Publication


Featured researches published by an-Fu Xu.


PLOS ONE | 2012

Salinomycin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells In Vitro and In Vivo

Fan Wang; Lei He; Weiqi Dai; Yaping Xu; Dong Hui Wu; Chunlei Lin; Shu-Mei Wu; Ping Cheng; Yan Liang Zhang; Miao Shen; Chen-Feng Wang; Jie Lu; Yingqun Zhou; Xuan-Fu Xu; Ling Xu; Chuanyong Guo

The anti-tumor antibiotic salinomycin (Sal) was recently identified as a selective inhibitor of breast cancer stem cells; however, the effect of Sal on hepatocellular carcinoma (HCC) is not clear. This study aimed to determine the anti-tumor efficacy and mechanism of Sal on HCC. HCC cell lines (HepG2, SMMC-7721, and BEL-7402) were treated with Sal. Cell doubling time was determinated by drawing growth curve, cell viability was evaluated using the Cell Counting Kit 8. The fraction of CD133+ cell subpopulations was assessed by flow cytometry. We found that Sal inhibits proliferation and decreases PCNA levels as well as the proportion of HCC CD133+cell subpopulations in HCC cells. Cell cycle was analyzed using flow cytometry and showed that Sal caused cell cycle arrest of the various HCC cell lines in different phases. Cell apoptosis was evaluated using flow cytometry and Hoechst 33342 staining. Sal induced apoptosis as characterized by an increase in the Bax/Bcl-2 ratio. Several signaling pathways were selected for further mechanistic analyses using real time-PCR and Western blot assays. Compared to control, β-catenin expression is significantly down-regulated upon Sal addition. The Ca2+ concentration in HCC cells was examined by flow cytometry and higher Ca2+ concentrations were observed in Sal treatment groups. The anti-tumor effect of Sal was further verified in vivo using the hepatoma orthotopic tumor model and the data obtained showed that the size of liver tumors in Sal-treated groups decreased compared to controls. Immunohistochemistry and TUNEL staining also demonstrated that Sal inhibits proliferation and induces apoptosis in vivo. Finally, the role of Sal on in vivo Wnt/β-catenin signaling was evaluated by Western blot and immunohistochemistry. This study demonstrates Sal inhibits proliferation and induces apoptosis of HCC cells in vitro and in vivo and one potential mechanism is inhibition of Wnt/β-catenin signaling via increased intracellular Ca2+ levels.


Gut | 2011

Reg4 protects against acinar cell necrosis in experimental pancreatitis.

Guoyong Hu; Jiaqing Shen; Li Cheng; Chuan-Yong Guo; Xuan-Fu Xu; Feng Wang; Li Huang; Lijuan Yang; Miao He; Di Xiang; Shunying Zhu; Mingyuan Wu; Yan Yu; Wei Han; Xing-Peng Wang

Background and aims Reg4 is a recently discovered member of the regenerating gene family with distinctive expression profiles in primary cancers. To date, the physiological function of Reg4 is poorly understood. Previously, the authors found that Reg4 was markedly upregulated during acute pancreatitis (AP). The aim of this study was to investigate the role of Reg4 in experimental pancreatitis. Methods AP was induced in C57BL/6 mice by administration of either l-arginine or caerulein, and Reg4 expression was assessed by immunofluorescence, reverse transcriptase (RT)-PCR and western blot analyses. Recombinant human Reg4 protein (rReg4), heat-inactivated Reg4, neutralising antibody and vehicle were also administered to mice by subcutaneous injection. The severity of AP was determined by measuring amylase and lipase activities in the serum and histological grading. The effect of rReg4 on cell death was examined and epidermal growth factor receptor (EGFR), p-EGFR, Akt, p-Akt, Bcl-2 and Bcl-xL expression were assessed by western blot analysis of isolated murine acinar cells treated with l-arginine. Results Reg4 mRNA and protein were markedly upregulated during arginine-induced pancreatitis. Reg4 was widely expressed in residual acinar cells around the islets and regenerating metaplastic epithelium. rReg4 could protect against arginine-induced necrosis of acinar cells both in vivo and in vitro. This protective effect was also confirmed in the caerulein-induced murine model of AP. It was shown that arginine induced expression of Bcl-2 and Bcl-xL, while rReg4 upregulated Bcl-2 and Bcl-xL expression by activating the EGFR/Akt pathway. The upregulation of Bcl-xL correlated inversely with cell necrosis in isolated pancreatic acinar cells. Conclusions The data suggest that Reg4 may protect against acinar cell necrosis in experimental pancreatitis by enhancing the expression of Bcl-2 and Bcl-xL via activation of the EGFR/Akt signalling pathway.


PLOS ONE | 2011

Expression of DNMT1 and DNMT3a Are Regulated by GLI1 in Human Pancreatic Cancer

Shanshan He; Feng Wang; Lijuan Yang; Chuan-Yong Guo; Rong Wan; Aiwu Ke; Ling Xu; Guoyong Hu; Xuan-Fu Xu; Jie Shen; Xingpeng Wang

Background and Aims GLI1, as an indispensable transcriptional factor of Hedgehog signaling pathway, plays an important role in the development of pancreatic cancer (PC). DNA methyltransferases (DNMTs) mediate the methylation of quantity of tumor-related genes. Our study aimed to explore the relationship between GLI1 and DNMTs. Methods Expressions of GLI1 and DNMTs were detected in tumor and adjacent normal tissues of PC patients by immunohistochemistry (IHC). PANC-1 cells were treated by cyclopamine and GLI1-siRNA, while BxPC-3 cells were transfected with overexpression-GLI1 lentiviral vector. Then GLI1 and DNMTs expression were analyzed by qRT-PCR and western blot (WB). Then we took chromatin immunoprecipitation (ChIP) to demonstrate GLI1 bind to DNMT1. Finally, nested MSP was taken to valuate the methylation levels of APC and hMLH1, when GLI1 expression altered. Results IHC result suggested the expressions of GLI1, DNMT1 and DNMT3a in PC tissues were all higher than those in adjacent normal tissues (p<0.05). After GLI1 expression repressed by cyclopamine in mRNA and protein level (down-regulation 88.1±2.2%, 86.4±2.2%, respectively), DNMT1 and DNMT3a mRNA and protein level decreased by 91.6%±2.2% and 83.8±4.8%, 87.4±2.7% and 84.4±1.3%, respectively. When further knocked down the expression of GLI1 by siRNA (mRNA decreased by 88.6±2.1%, protein decreased by 63.5±4.5%), DNMT1 and DNMT3a mRNA decreased by 80.9±2.3% and 78.6±3.8% and protein decreased by 64.8±2.8% and 67.5±5.6%, respectively. Over-expression of GLI1 by GLI1 gene transfection (mRNA increased by 655.5±85.9%, and protein increased by 272.3±14.4%.), DNMT1 and DNMT3a mRNA and protein increased by 293.0±14.8% and 578.3±58.5%, 143.5±17.4% and 214.0±18.9%, respectively. ChIP assays showed GLI1 protein bound to DNMT1 but not to DNMT3a. Results of nested MSP demonstrated GLI1 expression affected the DNA methylation level of APC but not hMLH1 in PC. Conclusion DNMT1 and DNMT3a are regulated by GLI1 in PC, and DNMT1 is its direct target gene.


Molecular Carcinogenesis | 2015

Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: Partial mediation by the transcription factor NFAT1

Weiqi Dai; Fan Wang; Lei He; Chunlei Lin; Shu-Mei Wu; Ping Chen; Yan Zhang; Miao Shen; Dong Wu; Chengfen Wang; Jie Lu; Yingqun Zhou; Xuan-Fu Xu; Ling Xu; Chuanyong Guo

To investigate the effects and mechanism of genistein on hepatocellular carcinoma. Cell counting kit‐8 assays showed that genistein at 3, 6, and 9 µM had no significant cytotoxic effects on HepG2, SMMC‐7721, and Bel‐7402 cells. Cell scratch and Transwell assays identified that genistein inhibited migration of three cell lines. In three cell lines, genistein enhanced E‐cadherin and α‐catenin, but reduced N‐cadherin and Vimentin at both mRNA and protein levels in a dose‐dependent manner. Simultaneously, treatment with genistein suppressed epithelial–mesenchymal transition (EMT) induced by TGF‐β. In HepG2 cells, genistein reduced mRNA, and protein expressions of nuclear factor of activated T cells 1 (NFAT1), Abca3, Autotaxin, CD154, and Cox‐2. Phorbol 12‐myristate 13‐acetate (PMA) and ionomycin enhanced activity of NFAT1, reduced E‐cadherin and α‐catenin protein levels, and increased protein levels of N‐cadherin and Vimentin. Transwell demonstrated that PMA and ionomycin reversed the migration inhibitory effects of genistein on HepG2 cells. In vivo, genistein inhibited the intrahepatic metastasis by reversing the EMT, which was correlated with reduced NFAT1. Genistein inhibited hepatocellular carcinoma cell migration by reversing the EMT, which was partly mediated by NFAT1. The fact that EMT can be reversed by genistein may shed light on the possible mechanisms for its role in liver cancer therapy.


Mediators of Inflammation | 2013

Protective Effects of Necrostatin-1 against Concanavalin A-Induced Acute Hepatic Injury in Mice

Yingqun Zhou; Weiqi Dai; Chunlei Lin; Fan Wang; Lei He; Miao Shen; Ping Chen; Chenfen Wang; Jie Lu; Ling Xu; Xuan-Fu Xu; Chuanyong Guo

Objective. Necrostatin-1 (Nec-1) inhibits receptor-interacting protein 1 (RIP1) kinase and programmed necrosis. This study was designed to examine the protective effects and mechanisms of Nec-1 in concanavalin A- (ConA-) induced hepatitis in mice. Methods. C57BL/6 mice were exposed to ConA via tail vein injection and injected intraperitoneally with Nec-1 or vehicle. Levels of serum liver enzymes and histopathology were determined. Levels of inflammatory cytokines with ConA-induced hepatitis were determined with real-time polymerase chain reaction (real-time PCR). The expression of TNF-α, RIP1, and LC3 was detected with immunohistochemical staining. The expression of TNF-α, IFN-γ, IL2, IL6, caspase 3, RIP1, beclin-1, and LC3 protein was assessed by immunofluorescence and western blotting. Autophagosomes were observed with transmission electron microscopy (TEM). Results. Amelioration in liver functions and histopathological changes and the suppression of inflammatory cytokine production were observed in Nec-1-injected mice. Western blotting analysis showed that the expression of TNF-α, IFN-γ, IL2, IL6, and RIP1 was significantly reduced in the Nec-1-injected mice, which was confirmed by immunofluorescence and immunohistochemistry. Autophagosome formation was significantly reduced by Nec-1 treatment, as the expression of beclin-1 and LC3, determined with immunofluorescence and western blotting. Conclusion. These results demonstrate that Nec-1 prevents ConA-induced liver injury via RIP1-related and autophagy-related pathways.


Pancreatology | 2011

Resveratrol Inhibits Proliferation and Induces Apoptosis through the Hedgehog Signaling Pathway in Pancreatic Cancer Cell

Wenhui Mo; Xuan-Fu Xu; Ling Xu; Feng Wang; Aiwu Ke; Xing-Peng Wang; Chuan-Yong Guo

Purpose: To investigate the effect and possible mechanisms of resveratrol on pancreatic cancer cells in vitro. Methods: After being treated with resveratrol, cell viability, cell cycle phase distribution and apoptosis rate of pancreatic cancer cells were measured by CCK-8 assay and flow cytometer, respectively. The effects of resveratrol on the Hedgehog pathway were studied by real-time RT-PCR and Western blotting. By interfering Gli1 expression in PANC-1 cells and overexpressing Gli1 in BxPC-3 cells, we detected the expressions of Gli1-targeted genes, such as Ptc1, CCND1 and BCL-2, compared with resveratrol experimental group. We further used the luciferase reporter assay to explore the correlation between resveratrol and Gli1. Results: Resveratrol inhibited the growth of pancreatic cancer cells in a dose- and time-dependent manner. Compared with control group, the cells in the G0/G1 phase and the apoptosis rate were significantly increased. Low concentration of resveratrol decreased the expression of the Hedgehog pathway members including Gli1, Ptc1 and Smo. The expression of downstream target genes of the Hedgehog pathway such as Gli1, Ptc1, CCND1 and BCL-2 were significantly decreased after 12.5 µM resveratrol treatment, which demonstrated a similar change of gene expression when Gli1 was knocked down by the RNAi technique in PANC-1 cells. Resveratrol also downregulated the expression of Gli1, Ptc1, CCND1 and BCL-2 in Gli1-overexpressed BxPC-3 cells. Results of the luciferase assay showed that resveratrol did not act on the Gli1 promoter directly. Conclusion: Resveratrol can inhibit pancreatic cancer cell survival and its mechanisms might be partly via the Hedgehog signaling pathway.


PLOS ONE | 2014

Sonic Hedgehog-Gli1 Signaling Pathway Regulates the Epithelial Mesenchymal Transition (EMT) by Mediating a New Target Gene, S100A4, in Pancreatic Cancer Cells

Xuan-Fu Xu; Bin Su; Chuangao Xie; Shumei Wei; Yingqun Zhou; Hua Liu; Weiqi Dai; Ping Cheng; Fan Wang; Xiaorong Xu; Chuanyong Guo

Aims The hedgehog signaling pathway plays an important role in EMT of pancreatic cancer cells, but the precise mechanisms remain elusive. Because S100A4 as a key EMT moleculer marker was found to be upregulated upon Gli1 in pancreatic cancer cells, we focused on the relationship between Shh-Gli1 signals and S100 genes family. Methods On the base of cDNA microarray data, we investigated regulating mechanism of Gli1 to some members of S100A genes family in pancreatic cancer cell lines firstly. Then, the regulation of Gli1 to S100A4 gene was studied by molecular biology assays and the pro-metastasis effection of Gli1-dependent S100A4 was investigated in vitro. Finally, the expressions of Shh, Gli1, S100A4 and E-cadherin in pancreatic cancer tissues were studied by using immunohistochemistry assays. Results Five members of the S100 genes family, S100A2, S100A4, S100A6, S100A11, and S100A14 were found to be downregulated significantly upon Gli1 knockdown. Gli1 enhancer prediction combining with in vitro data demonstrated that Gli1 primarily regulates S100A family members via cis-acting elements. Indeed, the data indicate S100A4 and vimentin genes were upregulated significantly by Shh/Gli1-expression increasing and E-cadherin was significantly reduced at the same time. Migration of PC cells was increased significantly in a dose-dependent manner of Gli1 expression (P<0.05) and siS100A4 significantly reversed the response of PC cells induced by L-Shh transduction (P<0.01). Conclusion Our data establish a novel connection between Shh-Gli1 signaling and S100A4 regulation, which imply that S100A4 might be one of the key factors in EMT mediated by Shh-Gli1 signaling in pancreatic cancer.


PLOS ONE | 2012

Genome-wide screening reveals an EMT molecular network mediated by Sonic hedgehog-Gli1 signaling in pancreatic cancer cells.

Xuan-Fu Xu; Yingqun Zhou; Chuangao Xie; Shu-mei Wei; Huizhong Gan; Shengli He; Fan Wang; Ling Xu; Jie Lu; Weiqi Dai; Lei He; Ping Chen; Xingpeng Wang; Chuanyong Guo

Aims The role of sonic hedgehog (SHH) in epithelial mesenchymal transition (EMT) of pancreatic cancer (PC) is known, however, its mechanism is unclear. Because SHH promotes tumor development predominantly through Gli1, we sought to understand its mechanism by identifying Gli1 targets in pancreatic cancer cells. Methods First, we investigated invasion, migration, and EMT in PC cells transfected with lentiviral Gli1 interference vectors or SHH over-expression vectors in vitro and in vivo. Next, we determined the target gene profiles of Gli1 in PC cells using cDNA microarray assays. Finally, the primary regulatory networks downstream of SHH-Gli1 signaling in PC cells were studied through functional analyses of these targets. Results Our results indicate there is decreased E-cadherin expression upon increased expression of SHH/Gli1. Migration of PC cells increased significantly in a dose-dependent manner within 24 hours of Gli1 expression (P<0.05). The ratio of liver metastasis and intrasplenic miniature metastasis increased markedly upon activation of SHH-Gli1 signals in nude mice. Using cDNA microarray, we identified 278 upregulated and 59 downregulated genes upon Gli1 expression in AsPC-1 cells. The data indicate that SHH-Gli1 signals promote EMT by mediating a complex signaling network including TGFβ, Ras, Wnt, growth factors, PI3K/AKT, integrins, transmembrane 4 superfamily (TM4SF), and S100A4. Conclusion Our results suggest that targeting the molecular connections established between SHH-Gli1 signaling and EMT could provide effective therapies for PC.


Journal of Carcinogenesis | 2009

Gli1 maintains cell survival by up-regulating IGFBP6 and Bcl-2 through promoter regions in parallel manner in pancreatic cancer cells

Xuan-Fu Xu; Chuan-Yong Guo; Jun Liu; Wen-Juan Yang; Yu-Jing Xia; Ling Xu; Yong-Chun Yu; Xing-Peng Wang

Background: Aberrant activation of Hedgehog (Hh) signaling pathway has been reported to be related to malignant biological behavior of pancreatic cancer but its mechanism is unclear yet. Since IGF pathway and Bcl-2 family are involved in proliferation and apoptosis of pancreatic cancer cells, we hypothesize that they are possibly associated with Hh pathway. Materials and Methods: We studied the relationship of Shh-Gli1 signaling pathway with proliferation and apoptosis of pancreatic cancer cells and the regulation of transcription factor Gli1 to insulin-like growth factor binding protein 6 (IGFBP6) and Bcl-2 genes at the level of transcription. Results: Sonic hedgehog (Shh), Smoothened (Smo), patched and Gli1 were expressed in pancreatic cancer cells. Cyclopamine inhibited cell proliferation at low concentration and induced apoptosis at high concentration. Effect of RNA interference (RNAi) for Gli1 to cell survival is mainly due to proliferation inhibition though involved in apoptosis. The transcription factor Gli1 bound to promoter regions of Bcl-2 and IGFBP6 genes and the levels of IGFBP6, proliferating cell nuclear antigen (PCNA) and Bcl-2 messenger RNA (mRNA) were decreased as well as Gli1 mRNA significantly by cyclopamine or RNAi in cultured pancreatic cancer cells (p < 0.01). Finally PCNA, IGFBP6 and Bcl-2 mRNA were upregulated as well as Shh or Gli1 in pancreatic cancer tissues (p < 0.01). Conclusions: Our study reveals that Gli1 maintained cell survival by binding the promoter regions and facilitating transcription of IGFBP6 and Bcl-2 genes in a parallel manner in pancreatic cancer cells and suggests it may be one of the mechanisms of Shh-Gli1 signaling pathway in pancreatic cancer.


Pancreatology | 2013

Mechanism of action of salinomycin on growth and migration in pancreatic cancer cell lines.

Lei He; Fan Wang; Weiqi Dai; Dong Wu; Chunlei Lin; Shu-Mei Wu; Ping Cheng; Yan Zhang; Miao Shen; Chen-Feng Wang; Jie Lu; Yingqun Zhou; Xuan-Fu Xu; Ling Xu; Chuanyong Guo

OBJECTIVES Pancreatic cancer is one of the most aggressive and lethal cancers worldwide and there are few effective treatments. Recently, salinomycin (Sal) was reported to alter proliferation and apoptosis in various tumors. This prompted us to investigate the effect of Sal on pancreatic cancer cells and to explore the possible molecular mechanism in vitro. METHODS After treatment with Sal, pancreatic cancer cell viability and apoptosis were analyzed by Hoechst 33342 staining and flow cytometry, respectively. Invasion and metastasis of pancreatic cancer cells were assayed by a Transwell migration assay. Flow cytometry was also used to assessed the fraction of CD133(+) cell subpopulations. The expression of proliferating cell nuclear antigen (PCNA), Bcl-2, E-cadherin, and Wnt/β-catenin signaling-related proteins were detected by RT-PCR and western blot. RESULTS Sal inhibited the growth and migration of pancreatic cancer cells in vitro in a dose- and time-dependent manner. We found that the proportion of CD133(+) cell subpopulations decreased after treatment with Sal in pancreatic cancer cell lines at the same time. The percentage of apoptotic cells was increased after Sal treatment. Compared with control groups, Bax and E-cadherin were significantly upregulated, and Bcl-2 and PCNA were significantly downregulated in Sal-treated cells. The expression of Wnt/β-catenin signaling-related proteins (β-catenin and p-GSK-3β) was inhibited. CONCLUSIONS These results indicate that Sal could influence the cell growth and migration in pancreatic cancer cells in vitro, which may occur by inhibition of Wnt/β-catenin signaling.

Collaboration


Dive into the an-Fu Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xingpeng Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge