Xuan Guan
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuan Guan.
Science Translational Medicine | 2014
Martin K. Childers; Romain Joubert; Karine Poulard; C. Moal; Robert W. Grange; Jonathan Doering; Michael W. Lawlor; Branden E. Rider; T. Jamet; N. Danièle; Samia Martin; Christel Rivière; Thomas Soker; Caroline Hammer; Laetitia van Wittenberghe; Mandy Lockard; Xuan Guan; Melissa A. Goddard; Erin Mitchell; Jane Barber; J. Koudy Williams; David L. Mack; Mark E. Furth; Alban Vignaud; Carole Masurier; Fulvio Mavilio; Philippe Moullier; Alan H. Beggs; Anna Buj-Bello
Intravenous injection of an adeno-associated viral vector expressing the myotubularin (MTM1) gene improves survival and rescues skeletal muscle function in mice and dogs affected by myotubular myopathy. Restoring Skeletal Muscle Function X-linked myotubular myopathy is a fatal disease of skeletal muscle that affects about 1 in 50,000 male births. Patients harbor mutations in the MTM1 gene and are typically born floppy, with severely weak limb and respiratory muscles. Survival requires intensive support, often including tube feeding and mechanical ventilation, but effective therapy is not available for patients. Gene replacement therapy using adeno-associated viral (AAV) vectors has potential for the treatment of inherited diseases like myotubular myopathy. Therefore, Childers et al. tested the effects of a recombinant AAV vector expressing myotubularin in two animal models of myotubularin deficiency: Mtm1 knockout mice and dogs carrying a naturally occurring MTM1 gene mutation. Results in both mice and dogs showed that a single intravascular injection of AAV strengthened severely weak muscles, corrected muscle pathology, and prolonged survival. No toxicity or immune response was observed in dogs. These results demonstrate the efficacy of gene replacement therapy for myotubular myopathy in animal models and pave the way to a clinical trial in patients. Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.
Stem Cell Research | 2014
Xuan Guan; David L. Mack; Claudia M. Moreno; Jennifer L. Strande; Julie Mathieu; Yingai Shi; Chad D. Markert; Zejing Wang; Guihua Liu; Michael W. Lawlor; Emily C. Moorefield; Tara N. Jones; James A. Fugate; Mark E. Furth; Charles E. Murry; Hannele Ruohola-Baker; Yuanyuan Zhang; Luis F. Santana; Martin K. Childers
The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs) have been employed to generate beating cardiomyocytes from a patients skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD). Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs). USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patients dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.
Stem cell reports | 2016
Josè Manuel Pioner; Alice Ward Racca; Jordan M. Klaiman; Kai Chun Yang; Xuan Guan; Lil Pabon; Veronica Muskheli; Rebecca Zaunbrecher; Jesse Macadangdang; Mark Y. Jeong; David L. Mack; Martin K. Childers; Deok Ho Kim; Chiara Tesi; Corrado Poggesi; Charles E. Murry; Michael Regnier
Summary Tension production and contractile properties are poorly characterized aspects of excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Previous approaches have been limited due to the small size and structural immaturity of early-stage hiPSC-CMs. We developed a substrate nanopatterning approach to produce hiPSC-CMs in culture with adult-like dimensions, T-tubule-like structures, and aligned myofibrils. We then isolated myofibrils from hiPSC-CMs and measured the tension and kinetics of activation and relaxation using a custom-built apparatus with fast solution switching. The contractile properties and ultrastructure of myofibrils more closely resembled human fetal myofibrils of similar gestational age than adult preparations. We also demonstrated the ability to study the development of contractile dysfunction of myofibrils from a patient-derived hiPSC-CM cell line carrying the familial cardiomyopathy MYH7 mutation (E848G). These methods can bring new insights to understanding cardiomyocyte maturation and developmental mechanical dysfunction of hiPSC-CMs with cardiomyopathic mutations.
Muscle & Nerve | 2012
Robert W. Grange; Jon Doering; Erin Mitchell; Melanie N. Holder; Xuan Guan; Melissa A. Goddard; Christopher Tegeler; Alan H. Beggs; Martin K. Childers
Introduction: We established a colony of dogs that harbor an X‐linked MTM1 missense mutation.Muscle from affected male dogs exhibits reduction and altered localization of the MTM1 gene product, myotubularin, and provides a model analogous to X‐linked myotubular myopathy (XLMTM). Methods: We studied hindlimb muscle function in age‐matched canine XLMTM genotypes between ages 9 and 18 weeks. Results: By the end of the study, affected dogs produce only ∼15% of the torque generated by normals or carriers (0.023 ± 0.005 vs. 0.152 ± 0.007 and 0.154 ± 0.003 N‐m/kg body mass, respectively, P < 0.05) and are too weak to stand unassisted. At this age, XLMTM dogs also demonstrate an abnormally low twitch:tetanus ratio, a right‐shifted torque‐frequency relationship and an increase in torque during repetitive stimulation (P < 0.05). Conclusions: We hypothesize that muscle weakness results from impaired excitation‐contraction (E‐C) coupling. Interventions that improve E‐C coupling might be translated from the XLMTM dog model to patients. Muscle Nerve 46: 588–591, 2012
American Journal of Physical Medicine & Rehabilitation | 2014
David L. Mack; Xuan Guan; Ashley L. Wagoner; Stephen J. Walker; Martin K. Childers
Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patients own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.
Journal of Cardiovascular Pharmacology and Therapeutics | 2016
Muhammad Z. Afzal; Melanie Reiter; Courtney Gastonguay; Jered V. McGivern; Xuan Guan; Zhi Dong Ge; David L. Mack; Martin K. Childers; Allison D. Ebert; Jennifer L. Strande
Background: Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. Methods and Results: Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide–cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. Conclusion: Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy.
Stem cell reports | 2018
Mark Aminzadeh; Russell G. Rogers; Mario Fournier; Rachel E. Tobin; Xuan Guan; Martin K. Childers; Allen M. Andres; David J. Taylor; Ahmed Ibrahim; Xiangming Ding; Angelo Torrente; Joshua M. Goldhaber; Michael I. Lewis; Roberta A. Gottlieb; Ronald A. Victor; Eduardo Marbán
Summary Genetic deficiency of dystrophin leads to disability and premature death in Duchenne muscular dystrophy (DMD), affecting the heart as well as skeletal muscle. Here, we report that clinical-stage cardiac progenitor cells, known as cardiosphere-derived cells (CDCs), improve cardiac and skeletal myopathy in the mdx mouse model of DMD. Injection of CDCs into the hearts of mdx mice augments cardiac function, ambulatory capacity, and survival. Exosomes secreted by human CDCs reproduce the benefits of CDCs in mdx mice and in human induced pluripotent stem cell-derived Duchenne cardiomyocytes. Surprisingly, CDCs and their exosomes also transiently restored partial expression of full-length dystrophin in mdx mice. The findings further motivate the testing of CDCs in Duchenne patients, while identifying exosomes as next-generation therapeutic candidates.
Methods | 2016
Xuan Guan; Melissa A. Goddard; David L. Mack; Martin K. Childers
Current treatment options for patients with monogenetic congenital myopathies (MCM) ameliorate the symptoms of the disorder without resolving the underlying cause. However, gene therapies are being developed where the mutated or deficient gene target is replaced. Preclinical findings in animal models appear promising, as illustrated by gene replacement for X-linked myotubular myopathy (XLMTM) in canine and murine models. Prospective applications and approaches to gene replacement therapy, using these disorders as examples, are discussed in this review.
Pm&r | 2011
Xuan Guan; Mark E. Furth; Martin K. Childers
Human stem cells derived from bone marrow are currently used in clinical medicine for bone and cartilage repair for injuries such as meniscal tears. New clinical stem cell studies underway include the treatment of patients with spinal cord injuries. Rapid advances in stem cell science are opening new avenues for drug discovery and may lead to new uses of stem cells for other musculoskeletal disorders.
bioRxiv | 2017
Mark Aminzadeh; Russell G. Rogers; Kenneth Gouin; Mario Fournier; Rachel E. Tobin; Xuan Guan; Martin K. Childers; Allen M. Andres; David J. Taylor; Ahmed Ibrahim; Xiangming Ding; Angelo Torrente; Joshua I. Goldhaber; Ronald A. Victor; Roberta A. Gottlieb; Michael I. Lewis; Eduardo Marbán
Genetic deficiency of dystrophin leads to disability and premature death in Duchenne muscular dystrophy, affecting the heart as well as skeletal muscle. Here we report that cardiosphere-derived cells (CDCs), which are being tested clinically for the treatment of Duchenne cardiomyopathy, improve cardiac and skeletal myopathy in the mdx mouse model of DMD and in human Duchenne cardiomyocytes. Injection of CDCs into the hearts of mdx mice augments cardiac function, ambulatory capacity and survival. Exosomes secreted by human CDCs reproduce the benefits of CDCs in mdx mice and in human Duchenne cardiomyocytes. The findings further motivate the testing of CDCs in Duchenne patients, while identifying exosomes as next-generation therapeutic candidates.