Xuechu Chen
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuechu Chen.
Journal of Colloid and Interface Science | 2010
Yi Dong; Deyi Wu; Xuechu Chen; Yan Lin
Zeolite synthesized from coal fly ash (ZFA) was modified with hexadecyltrimethylammonium (HDTMA) and was examined for the adsorption of bisphenol A (BPA) from water. Two ZFAs were prepared in our laboratory and were characterized to obtain chemical and mineralogical composition, surface area, and total and external cation-exchange capacity among other parameters. HDTMA was confirmed to form bilayer micelles on external surfaces of zeolites. Results indicate that, while ZFA had no affinity for BPA, the surfactant-modified ZFA (SMZFA) showed greatly enhanced adsorption capacity. Uptake of BPA was greatly influenced by pH, increasing at alkaline pH conditions which enable the deprotonation of BPA to form organic anions. The SMZFA with higher BET area and higher amount of loaded HDTMA showed greater retention for BPA. Uptake of BPA by SMZFA was improved slightly in the presence of NaCl, and was enhanced at a low temperature. We propose that BPA anions interact strongly with the positively charged heads of HDTMA, with the two hydrophobic benzene rings of BPA pointing to the inside of HDTMA bilayers. The adsorption of uncharged BPA probably involved hydrophobic partitioning into HDTMA bilayers and the coordination of the oxygen atoms of BPA with positively charged heads of HDTMA.
Journal of Environmental Sciences-china | 2009
Xuechu Chen; Hainan Kong; De-yi Wu; Xinze Wang; Yongyong Lin
Xonotlite was synthesized and tested for phosphate removal and recovery from synthetic solution in a batch mode. The effects of pH, initial calcium concentration, bicarbonate concentration on phosphate removal through crystallization were examined. The morphology and X-ray diffraction (XRD) pattern of xonotlite before and after crystallization confirmed the formation of crystalline hydroxyapatite. The results indicated that the crystallization product had a very high P content (> 10%), which is comparable to phosphate rock at the dosage of 50-200 mg xonotlite per liter, with a maximum P content of 16.7%. The kinetics of phosphate removal followed the second-order reaction equation. The phosphate removal ability increased with increasing pH. The precipitation of calcium phosphate took place when pH was higher than 7.2, whereas the crystallization occurred at pH 6.0. A high calcium concentration could promote the removal of phosphate via crystallization, while a high bicarbonate concentration also enhanced phosphate removal, through that the pH was increased and thus induced the precipitation process. When xonotlite was used to remove phosphate from wastewater, the removal efficiency could reach 91.3% after 24 h reaction, with removal capacity 137 mg/g. The results indicated that xonotlite might be used as an effective crystal seed for the removal and recovery of phosphate from aqueous solution.
Journal of Hazardous Materials | 2009
Qingyu Guan; Deyi Wu; Yan Lin; Xuechu Chen; Xinze Wang; Chunjie Li; Shengbing He; Hainan Kong
Zeolitic materials were synthesized from thermally treated sediment by alkali treatment using different NaOH/sediment ratios. Characterization of the materials was done by XRD, FTIR, cation exchange capacity and specific surface area. Use of high NaOH/sediment ratio favored the formation of zeolite. The potential value of the zeolitic materials for the retention of trivalent chromium from water was examined. The maximum of Cr(III) sorption by the zeolitic materials, determined by a repeated batch equilibration method, ranged from 38.9 to 75.8 mg/g which was much greater than that of the thermally treated sediment (6.3 mg/g). No release of sorbed Cr(III) by 1.0M MgCl(2) at pH 7 was observed but Cr(III) desorption by ionic electrolyte increased with decreasing pH. The zeolitic materials could completely remove Cr(III) from wastewater even in the presence of Na(+) and Ca(2+) with high concentrations with a dose above 2.5 g/L. The pH-dependent desorption behavior and the high selectivity of zeolitic material for Cr(III) were explained by sorption at surface hydroxyl sites and formation of surface precipitates.
Chemosphere | 2009
Xuechu Chen; Shengbin He; Yingying Huang; Hainan Kong; Yan Lin; Chunjie Li; Guoquan Zeng
The occurrence of harmful algal bloom in water source poses a serious water safety problem to local water supply systems. In order to ensure the raw water quality, the feasibility of reducing harmful algae by light-shading plus aeration was investigated. The batch test showed that algal biomass reduced rapidly under light-shading condition, and the reduction efficiency was further increased when light-shading was accompanied by aeration. The continuous flow experiment showed that the algal reduction efficiency increased with the increase of residence time. At residence time of 5 d, when treated with light-shading plus aeration, algal biomass could be reduced by more than 65%, with raw water quality improved simultaneously. Furthermore, considering that some harmful algae such as Microcystis tend to float upwards under light-limited condition, an integrated light-shading system consisting of pre-separation process and light-shading plus aeration treatment was suggested to treat naturally high algal water. The result showed that pre-separation process could remove more than 40% of algal biomass, and the total reduction efficiency of the integrated system increased to above 80%.
Chemosphere | 2016
Jing-hang Xu; Shengbing He; Suqing Wu; Jungchen Huang; Weili Zhou; Xuechu Chen
Organic Carbon added to low ratio of carbon to nitrogen (C/N ratio) wastewater to enhance heterotrophic denitrification performance might lead to higher operating costs and secondary pollution. In this study, sodium thiosulfate (Na2S2O3) was applied as an electron donor for a gravel filter (one kind of constructed wetland) to investigate effects of hydraulic retention time (HRT) and water temperature on the nitrate removal efficiency. The results show that with an HRT of 12 h, the average total nitrogen (TN) removal efficiencies were 91% at 15-20 °C and 18% at 3-6 °C, respectively. When HRT increased to 24 h, the average TN removal increased accordingly to 41% at 3-6 °C, suggesting denitrification performance was improved by extended HRT at low water temperatures. Due to denitrification, 96% of added nitrate nitrogen (NO3(-)-N) was converted to nitrogen gas, with a mean flux of nitrous oxide (N2O) was 0.0268-0.1500 ug m(-2) h(-1), while 98.86% of thiosulfate was gradually converted to sulfate throughout the system. Thus, our results show that the sulfur driven autotrophic denitrification constructed wetland demonstrated an excellent removal efficiency of nitrate for wastewater treatment. The HRT and water temperature proved to be two influencing factors in this constructed wetland treatment system.
Chemosphere | 2015
Xuechu Chen; Shengbing He; Yueping Zhang; Xiaobo Huang; Yingying Huang; Danyue Chen; Xiaochen Huang; Jianwu Tang
Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water column plus carbon addition would benefit the diffusion across the sediment-water interface, we conducted simulation experiments to identify a method for enhancing nitrate removal. The results suggested that the sediment-water interface has a great potential for nitrate removal, and the potential can be activated after several days of acclimation. Adding additional carbon plus mixing significantly increases the nitrate removal capacity, and the removal of total nitrogen (TN) and nitrate-nitrogen (NO3(-)-N) is well fitted to a first-order reaction model. Adding Hydrilla verticillata debris as a carbon source increased nitrate removal, whereas adding Eichhornia crassipe decreased it. Adding ethanol plus mixing greatly improved the removal performance, with the removal rate of NO3(-)-N and TN reaching 15.0-16.5 g m(-2) d(-1). The feasibility of this enhancement method was further confirmed with a wetland microcosm, and the NO3(-)-N removal rate maintained at 10.0-12.0 g m(-2) d(-1) at a hydraulic loading rate of 0.5 m d(-1).
Journal of Hazardous Materials | 2016
Yingying Huang; Xuechu Chen; Shengbing He; Yang An; Xiaojuan Yu; Xin Peng
In-situ light-availability control is commonly used to suppress Microcystis blooms in nutrient-rich water resources. It has been suggested that the reduction of column cyanobacterial biomass could mostly be attributed to the inhibition of photosynthesis. However, sinking loss may be another factor influencing the column cyanobacterial biomass. To further investigate the mechanism of this reduction, a mixing-static water column experimental apparatus was designed to simulate the reduction of Microcystis biomass under light-availability control. Under light-shading plus mixing, the reduction of Microcystis in the water column was attributed to both intrinsic biomass loss and sinking loss. Comparatively, under light-shading without mixing, the Microcystis accumulated in surface water, maintaining a continuously increase of intrinsic biomass. Meanwhile, the sinking loss increased as the water column became static, even exceeding the increase of intrinsic biomass, suggesting that sinking loss was the main mechanism for the reduction under light-shading. Further investigation indicated that both intrinsic growth rate and sinking loss rate varied in response to available light. Accordingly, a hypothesis is represented that the loss of column biomass and the shift in dominant species under light-availability control are primarily attributed to the combined effects of intrinsic biomass change and sinking loss, which both respond to available light.
Journal of Oceanology and Limnology | 2018
Yingying Huang; Haichun Zhang; Rufeng Gao; Xiaochen Huang; Xiaojuan Yu; Xuechu Chen
Harmful algal blooms in eutrophic waters pose a serious threat to freshwater ecosystems and human health. In-situ light availability control is one of the most commonly used technologies to suppress algae in lakes and reservoirs. To develop a better understanding of the effects of light on algal growth, specific density, colony size and sinking loss, Anabaena flos-aquae (cyanobacteria) and Scenedesmus obliquus (green algae) were evaluated in varying light scenarios. The results showed that the specific density and colony size of these two species varied during growth, and there were obvious differences among the light scenarios. At the end of exponential phase, S. obliquus incubated under light-limited condition maintained a higher specific density and formed larger aggregates, whereas A. flos-aquae formed a longer filament length. Both species exhibited higher sinking loss rates with lower light availability. These results implied that the sinking loss rate was not always constant but should be considered as a variable response to the change of light availability, and in-situ light availability control might result in a significant increase of the sinking loss of algae due to the change of size and specific density, thereby further affecting the algal biomass in the water column.
Chemosphere | 2018
Xuechu Chen; Yingying Huang; Guiqin Chen; Panpan Li; Yingshi Shen; Timothy W. Davis
Recent studies indicated that the algal decomposition produces particulate and dissolved organic carbon (DOC), and can enhance denitrification in eutrophic lakes. However, the effects of the living cyanobacteria on nitrogen cycling in eutrophic lakes were still an unknown question. This study explores a new underlying mechanism of nitrate removal which is driven by living Microcystis. The results suggested that living Microcystis significantly enhanced the nitrate removal at sediment-water interface, with a nitrate removal rate of 0.54 d-1, which was 2.57 times higher than the nitrate removal rate in the treatment without the addition of Microcystis. Measurements of Chl a and Fv/Fm confirmed that Microcystis was tolerant to the dark/anoxic condition, and the recovery experiments suggested that Microcystis could survive under such stress conditions for at least seven days. Meanwhile, DOC secreted by living Microcystis reached to 4.55 mg C mg-1 Chl a. These secretions were biodegradable hydrophilic and contained carbohydrates and proteins. Our study indicated that during blooms, sinking Microcystis cells could directly provide DOC as carbon source, then consequently enhanced the denitrification at sediment-water interface, and the interactive relationship between living cyanobacteria and permanent nitrate removal should be taken into account while studying nitrogen cycling in aquatic ecosystem.
Chemosphere | 2018
Yingying Huang; Panpan Li; Guiqin Chen; Lin Peng; Xuechu Chen
Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NOX--N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs.