Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueping Fan is active.

Publication


Featured researches published by Xueping Fan.


Neuron | 2003

Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline.

Xueping Fan; Juan-Pablo Labrador; Huey Hing; Greg J. Bashaw

Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robos cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.


American Journal of Human Genetics | 2007

Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux

Weining Lu; Albertien M. van Eerde; Xueping Fan; Fabiola Quintero-Rivera; Shashikant Kulkarni; Heather L. Ferguson; Hyung Goo Kim; Yanli Fan; Qiongchao Xi; Qing Gang Li; Damien Sanlaville; William Andrews; Vasi Sundaresan; Weimin Bi; Jiong Yan; Jacques C. Giltay; Cisca Wijmenga; Tom P.V.M. de Jong; Sally Feather; Adrian S. Woolf; Yi Rao; James R. Lupski; Michael R. Eccles; Bradley J. Quade; James F. Gusella; Cynthia C. Morton; Richard L. Maas

Congenital anomalies of the kidney and urinary tract (CAKUT) include vesicoureteral reflux (VUR). VUR is a complex, genetically heterogeneous developmental disorder characterized by the retrograde flow of urine from the bladder into the ureter and is associated with reflux nephropathy, the cause of 15% of end-stage renal disease in children and young adults. We investigated a man with a de novo translocation, 46,X,t(Y;3)(p11;p12)dn, who exhibits multiple congenital abnormalities, including severe bilateral VUR with ureterovesical junction defects. This translocation disrupts ROBO2, which encodes a transmembrane receptor for SLIT ligand, and produces dominant-negative ROBO2 proteins that abrogate SLIT-ROBO signaling in vitro. In addition, we identified two novel ROBO2 intracellular missense variants that segregate with CAKUT and VUR in two unrelated families. Adult heterozygous and mosaic mutant mice with reduced Robo2 gene dosage also exhibit striking CAKUT-VUR phenotypes. Collectively, these results implicate the SLIT-ROBO signaling pathway in the pathogenesis of a subset of human VUR.


Canadian Journal of Neurological Sciences | 2003

Progress in understanding the pathogenesis of oculopharyngeal muscular dystrophy.

Xueping Fan; Guy A. Rouleau

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and proximal limb weakness. The autosomal dominant form of this disease is caused by expansions of a (GCG)6 repeat to (GCG)8-13 in the PABPN1 gene. These mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminal domain of PABPN1. Mutated PABPN1 (mPABPN1) induces the formation of muscle intranuclear inclusions that are thought to be the hallmark of this disease. In this review, we discuss: 1) OPMD genetics and PABPN I function studies; 2) diseases caused by polyalanine expansions and cellular polyalanine toxicity; 3) mPABPN1-induced intranuclear inclusion toxicity; 4) role of oligomerization of mPABPNI in the formation and toxicity of OPMD intranuclear inclusions and; 5) recruitment of subcellular components to the OPMD inclusions. We present a potential molecular mechanism for OPMD pathogenesis that accounts for these observations.


Human Molecular Genetics | 2015

MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus

Fabiola Quintero-Rivera; Qiongchao J. Xi; Kim M. Keppler-Noreuil; Ji Hyun Lee; Anne W. Higgins; Raymond M. Anchan; Amy E. Roberts; Ihn Sik Seong; Xueping Fan; Kasper Lage; Lily Y. Lu; Xuchen Hu; Ronald Berezney; Bruce D. Gelb; Anna Kamp; Ivan P. Moskowitz; Ronald V. Lacro; Weining Lu; Cynthia C. Morton; James F. Gusella; Richard L. Maas

Cardiac left ventricular outflow tract (LVOT) defects represent a common but heterogeneous subset of congenital heart disease for which gene identification has been difficult. We describe a 46,XY,t(1;5)(p36.11;q31.2)dn translocation carrier with pervasive developmental delay who also exhibited LVOT defects, including bicuspid aortic valve (BAV), coarctation of the aorta (CoA) and patent ductus arteriosus (PDA). The 1p breakpoint disrupts the 5′ UTR of AHDC1, which encodes AT-hook DNA-binding motif containing-1 protein, and AHDC1-truncating mutations have recently been described in a syndrome that includes developmental delay, but not congenital heart disease [Xia, F., Bainbridge, M.N., Tan, T.Y., Wangler, M.F., Scheuerle, A.E., Zackai, E.H., Harr, M.H., Sutton, V.R., Nalam, R.L., Zhu, W. et al. (2014) De Novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am. J. Hum. Genet., 94, 784–789]. On the other hand, the 5q translocation breakpoint disrupts the 3′ UTR of MATR3, which encodes the nuclear matrix protein Matrin 3, and mouse Matr3 is strongly expressed in neural crest, developing heart and great vessels, whereas Ahdc1 is not. To further establish MATR3 3′ UTR disruption as the cause of the probands LVOT defects, we prepared a mouse Matr3Gt-ex13 gene trap allele that disrupted the 3′ portion of the gene. Matr3Gt-ex13 homozygotes are early embryo lethal, but Matr3Gt-ex13 heterozygotes exhibit incompletely penetrant BAV, CoA and PDA phenotypes similar to those in the human proband, as well as ventricular septal defect (VSD) and double-outlet right ventricle (DORV). Both the human MATR3 translocation breakpoint and the mouse Matr3Gt-ex13 gene trap insertion disturb the polyadenylation of MATR3 transcripts and alter Matrin 3 protein expression, quantitatively or qualitatively. Thus, subtle perturbations in Matrin 3 expression appear to cause similar LVOT defects in human and mouse.


JCI insight | 2016

SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion

Xueping Fan; Hongying Yang; Sudhir Kumar; Kathleen E. Tumelty; Anna Pisarek-Horowitz; Hila Milo Rasouly; Richa Sharma; Stefanie Chan; Edyta Tyminski; Michael Shamashkin; Mostafa E. Belghasem; Joel M. Henderson; Anthony J. Coyle; David J. Salant; Stephen P. Berasi; Weining Lu

The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.


Development | 2016

Crim1 regulates integrin signaling in murine lens development

Ying Zhang; Jieqing Fan; Joshua W. K. Ho; Tommy Hu; Stephen C. Kneeland; Xueping Fan; Qiongchao Xi; Michael A. Sellarole; Wilhelmine N. de Vries; Weining Lu; Salil A. Lachke; Richard A. Lang; Simon W. M. John; Richard L. Maas

The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1glcr11, which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1null and Crim1cko, we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active β1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development. Summary: Crim1, a type I transmembrane protein, acts in lens epithelial cells where it colocalizes with and regulates the levels of active β1 integrin to control cell adhesion during mouse lens morphogenesis.


Journal of Biological Chemistry | 2018

Identification of direct negative crosstalk between the SLIT2 and Bone Morphogenetic Protein-Gremlin signaling pathways

Kathleen E. Tumelty; Nathan Higginson-Scott; Xueping Fan; Piyush Bajaj; Kelly M. Knowlton; Michael Shamashkin; Anthony J. Coyle; Weining Lu; Stephen P. Berasi

Slit guidance ligand 2 (SLIT2) is a large, secreted protein that binds roundabout (ROBO) receptors on multiple cell types, including neurons and kidney podocytes. SLIT2-ROBO–mediated signaling regulates neuronal migration and ureteric bud (UB) outgrowth during kidney development as well as glomerular filtration in adult kidneys. Additionally, SLIT2 binds Gremlin, an antagonist of bone morphogenetic proteins (BMPs), and BMP–Gremlin signaling also regulates UB formation. However, direct cross-talk between the ROBO2–SLIT2 and BMP–Gremlin signaling pathways has not been established. Here, we report the discovery of negative feedback between the SLIT2 and BMP–Gremlin signaling pathways. We found that the SLIT2–Gremlin interaction inhibited both SLIT2–ROBO2 signaling in neurons and Gremlin antagonism of BMP activity in myoblasts and fibroblasts. Furthermore, BMP2 down-regulated SLIT2 expression and promoter activity through canonical BMP signaling. Gremlin treatment, BMP receptor inhibition, and SMAD family member 4 (SMAD4) knockdown rescued BMP-mediated repression of SLIT2. BMP2 treatment of nephron progenitor cells derived from human embryonic stem cells decreased SLIT2 expression, further suggesting an interaction between the BMP2–Gremlin and SLIT2 pathways in human kidney cells. In conclusion, our study has revealed direct negative cross-talk between two pathways, previously thought to be unassociated, that may regulate both kidney development and adult tissue maintenance.


American Journal of Kidney Diseases | 2007

128: Disruption of ROBO2 is Associated with Urinary Tract Anomalies and Confers Risk of Vesicoureteral Reflux

Weining Lu; Albertien van Eerde; Xueping Fan; Fabiola Quintero-Rivera; Qinggang Li; Damien Sanlaville; William Andrews; Vasi Sundaresan; Jacques Giltay; Sally Feather; Adrian S. Woolf; Yi Rao; Cynthia C. Morton; Richard L. Maas


Human Molecular Genetics | 2001

Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death

Xueping Fan; Patrick A. Dion; Janet Laganière; Bernard Brais; Guy A. Rouleau


Endocrinology | 1998

Orchidectomy induces a wave of apoptotic cell death in the epididymis.

Xueping Fan; Bernard Robaire

Collaboration


Dive into the Xueping Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard L. Maas

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Brais

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Patrick A. Dion

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge