Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueqin Wang is active.

Publication


Featured researches published by Xueqin Wang.


Carbohydrate Polymers | 2013

Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities.

Bing Li; Song Liu; Ronge Xing; Kecheng Li; Rongfeng Li; Yukun Qin; Xueqin Wang; Zhenhua Wei; Pengcheng Li

The effects of degradation on molecular weights (Mws) of polysaccharides from Enteromorpha prolifera were investigated. Microwave-assistance could highly accelerate reaction rate. Six representative sulfated polysaccharides (Mw 446.5, 247.0, 76.1, 19.0, 5.0 and 3.1 KDa) were prepared by a microwave-assistance acid hydrolysis method. Chemical analysis and FT-IR spectrum showed only glycosidic linkages were cleft without breaking significant structural units. Antioxidant activities of representative polysaccharides revealed that all samples showed great inhibitory effects on superoxide radical at a low concentration compared to Vitamin C and samples with high Mws exhibited higher inhibitory effects. On the contrary, samples with low Mws possessed stronger inhibitory effects on hydroxyl radical, IC(50) of Mw 3.1 KDa was 0.39 mg/mL. The chelating effect of Mw 3.1 KDa was 77.3% at 5mg/mL, which was twice more than initial polysaccharide. The study indicated Mw was the most significant factor to influence antioxidant activities of polysaccharides from E. prolifera.


International Journal of Biological Macromolecules | 2012

Separation and scavenging superoxide radical activity of chitooligomers with degree of polymerization 6-16

Kecheng Li; Ronge Xing; Song Liu; Yukun Qin; Bing Li; Xueqin Wang; Pengcheng Li

The separation of chitooligomers (COS) with well-defined degree of polymerization (DP) is of interest to further study their bioactivity. However, there has been no report on separation of chitooligomers with DP>6 and the activity of these oligomers is unknown. This paper focuses on separating COS with DP>6 and five fractions were separated from the prepared fully deacetylated chitooligomers mixture by CM Sepharose Fast Flow column and analyzed by HPLC, which mainly contained glucosamine oligomers with DP6-7 (41.31%, 50.22%), DP7-8 (22.47%, 70.13%), DP9-10 (53.06%, 27.99%), DP10-12 (18.45%, 49.36%, 22.31%), and DP>12, respectively. The superoxide radical scavenging activity of each fraction was investigated. The oligomers with DP ranging from 10 to 12 exhibited higher scavenging activity than other fractions and in combination with the DP distribution of fractions, it was further concluded that the chitooligomers with DP11 was likely to be optimal for scavenging superoxide radical activity.


BioMed Research International | 2017

Optimization of the Extraction and Stability of Antioxidative Peptides from Mackerel (Pneumatophorus japonicus) Protein

Xueqin Wang; Huahua Yu; Ronge Xing; Xiaolin Chen; Song Liu; Pengcheng Li

This study optimizes the preparation conditions for mackerel protein hydrolysate (MPH) by response surface methodology (RSM) and investigates the stability of the antioxidant activity of MPHs (<2.5 kDa). The optimal conditions were as follows: enzyme concentration of 1726.85 U/g, pH of 7.00, temperature of 39.55°C, time of 5.5 h, and water/material ratio of 25 : 1, and the maximum DPPH scavenging activity was 79.14%. The MPHs indicated significant cellular antioxidant activity at low concentrations. Furthermore, the temperature and freeze-thaw cycles had little effect on the antioxidative stability while pH had significant effect on the antioxidative stability. In addition, the MPHs were sensitive to the metal ions, such as Fe2+, Fe3+, Zn2+, and Cu2+. Notably, when the concentrations of Fe2+ and Fe3+ were 5 mM, the DPPH scavenging activities were only 1.1% and 0.6%, respectively; furthermore, Cu2+ at a 5 mM concentration could completely inhibit the DPPH scavenging activity of MPHs. In contrast, K+ and Mg2+ had no notable effect on the antioxidant activity of MPHs. These results may provide a scientific basis for the processing and application of MPHs.


Chinese Journal of Oceanology and Limnology | 2015

Purification and characterization of novel antioxidant peptides of different molecular weights from mackerel Pneumatophorus japonicus protein hydrolysate

Xueqin Wang; Ronge Xing; Song Liu; Huahua Yu; Kecheng Li; Zuoyuan Chen; Pengcheng Li

Mackerel (Pneumatophorus japonic u s) proteins were hydrolyzed by five proteases: trypsin, papain, neutrase, acid protease, and flavourzyme. The hydrolysate treated by neutrase exhibited the highest antioxidant activity. Response surface methodology (RSM) was employed to optimize the hydrolysis conditions in an effort to obtain a mackerel protein hydrolysate (MPH) with the highest DPPH radical scavenging activity. The MPH was fractioned using a series of ultrafiltration membranes and five fractions, namely, MPH-I (>10 kDa), MPH-II (10–2.5 kDa), MPH-III (1–2.5 kDa), MPH-IV (0.4–1 kDa), and MPH-V (below 0.4 kDa), were obtained. DPPH radical scavenging activity, reducing power, hydroxyl radical scavenging activity, and the lipid peroxidation inhibition capability of these fractions were evaluated. The fractions in molecular weights <2.5 kDa (MPH-III, MPH-IV, and MPH-V), which occupied 93.4% of the total fractions, showed the strongest antioxidant activity; and the antioxidant activities of the three fractions are similar to each other. Using SP Sephadex C-25 and Sephadex G-25 columns, eight fractions were obtained from the MPH (<2.5 kDa). The isolated peptide I (1 664 kDa) displayed the highest DPPH radical scavenging activity. Therefore, MPH is a potential source of antioxidant peptides.


Toxins | 2017

Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms’ Lytic Activity Using Mass Spectrometry and Zymography

Yang Yue; Huahua Yu; Rongfeng Li; Ronge Xing; Song Liu; Kecheng Li; Xueqin Wang; Xiaolin Chen; Pengcheng Li

Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.


Toxicon | 2017

Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii

Yang Yue; Huahua Yu; Rongfeng Li; Ronge Xing; Song Liu; Kecheng Li; Xueqin Wang; Xiaolin Chen; Pengcheng Li

ABSTRACT Jellyfish envenomations are emerging as an important public health concern occurred worldwide. In China, the situation is getting worse with numerous people stung by jellyfish Nemopilema nomurai (N. nomurai) and Cyanea nozakii (C. nozakii) in the summer. However, the proteinaceous mixtures in nematocysts responsible for the symptoms of jellyfish stings were scarcely characterized and understood in view of enzymatic constituents and toxicity. In the present study, enzymatic properties of jellyfish N. nomurai and C. nozakii nematocyst venom were analyzed biochemically and kinetically. The current data revealed that N. nomurai and C. nozakii nematocyst venom exhibited various enzymatic activities, of which metalloproteinases activity and PLA2s‐like activity were predominant. Moreover, the catalytic activities of metalloproteinases and PLA2s‐like were dependent on different physiochemical conditions such as temperature, pH and divalent ions. Kinetic profiling revealed their catalytic behaviors fitted the Michaelis‐Menten equation under specific conditions. Findings suggested jellyfish nematocyst venom possessed diverse enzymatic constituents, which may underlie the extensively characterized bioactivities of jellyfish venom and human envenomations. Hence, our study will contribute to understanding the enzymatic constituents and toxicity of jellyfish nematocyst venom and may afford potential therapeutic targets for developing drugs for jellyfish stings. HighlightsJellyfish N. nomurai and C. nozakii nematocyst venom exhibited significant enzymatic properties.Jellyfish venom metalloproteinase activity and PLA2 activity varied depending on the physicochemical conditions.NnNV metalloproteinases kinetically degraded azocasein with the Vmax value of 11.4 ± 1.2 U/mg/min.NnNV PLA2s exhibited slightly higher catalytic activity on NOBA than that of CnNV with a kcat value of 7.5 × 10−3 min−1.


RSC Advances | 2018

Effect and mechanism of oyster hydrolytic peptides on spatial learning and memory in mice

Xueqin Wang; Huahua Yu; Ronge Xing; Song Liu; Xiaolin Chen; Pengcheng Li

Oysters (Crassostrea talienwhanensis) contain large amounts of protein and exhibit many biological activities. This study was aimed at preparing oyster protein hydrolysates (OPH) and evaluating the OPH based on a spatial learning and memory capacity. A response surface methodology was employed to optimize hydrolysis conditions to determine the OPH with the highest AChE inhibitory activity, and the optimum extraction conditions were as follows: enzyme concentration of 1444.88 U g−1, pH of 7.38, extraction temperature of 45 °C, extraction time of 5.56 h and a water/material ratio of 2.45 : 1, and the minimum acetylcholinesterase (AChE) activity was 0.069 mM min−1. The spatial memory and learning abilities and passive avoidance in mice were determined by using the Morris water maze test and a dark/light avoidance test. Furthermore, the OPH group could relieve oxidative stress, reduce AChE levels, increase choline acetyltransferase (ChAT) levels and alleviate inflammatory reaction through reduction of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels. Additionally, up-regulated expressions of brain-derived neurotrophic factor (BDNF) and neural cell adhesion molecules (NCAM) were observed in mice treated with OPH. These findings suggested that OPH could be a functional food candidate to improve the learning and memory ability associated with oxidative stress and inflammatory reactions.


Journal of Oceanology and Limnology | 2018

Preparation of low molecular weight Sargassum fusiforme polysaccharide and its anticoagulant activity

Yuhao Sun; Xiaolin Chen; Song Liu; Huahua Yu; Rongfeng Li; Xueqin Wang; Yukun Qin; Pengcheng Li

Heparin has been used as an anticoagulant drug for many years, but it has significant side effects. In the search for good substitutes, low molecular weight (MW) polysaccharides from Sargassum fusiforme have been examined and confirmed to possess biological activities. Here, S. fusiforme polysaccharides (SFP) were extracted and subjected to a hydrogen peroxide (H2O2) oxidation method for the preparation of low-MW SFP (LSFP). The effects of temperature, pH, and H2O2 concentration on the degradation process were also examined. Several LSFP of 36, 9, 5.7, and 2.7 kDa were obtained under different conditions, and their anticoagulant activities studied in vitro. The results showed that SFP and LSFP prolonged activated partial thromboplastin (APTT), prothrombin (PT) and thrombin times (TT) significantly, indicating that these low MW polysaccharides possessed anticoagulant activity in the intrinsic, extrinsic, and common coagulation pathways. As these effects were related to the MW of the polysaccharides in APTT and TT but not in PT, the contents of the monosaccharide fucose and sulfate and the polysaccharide MW could have exerted combined effects. The details of this mechanism require further verification.


PeerJ | 2017

Effect of the molecular weight of water-soluble chitosan on its fat-/cholesterol-binding capacities and inhibitory activities to pancreatic lipase

Qiu Jin; Huahua Yu; Xueqin Wang; Kecheng Li; Pengcheng Li

Background Obesity has become a worldwide burden to public health in recent decades. Given that obesity is caused by an imbalance between caloric intake and expenditure, and that dietary fat is the most important energy source of all macronutrients (by providing the most calories), a valuable strategy for obesity treatment and prevention is to block fat absorption via the gastrointestinal pathway. In this study, the fat- and cholesterol-binding capacities and the inhibition of pancreatic lipase by water-soluble chitosan (WSC) with different weight-average molecular weight (Mw) were tested and compared in vitro, in order to determine the anti-obesity effects of WSC and the influence of its Mw. Methods In this study, WSC with different Mw (∼1,000, ∼3,000, ∼5,000, ∼7,000 and ∼9,000 Da) were prepared by oxidative degradation assisted with microwave irradiation. A biopharmaceutical model of the digestive tract was used to determine the fat- and cholesterol-binding capacity of WSC samples. The pancreatic lipase assays were based on p-nitrophenyl derivatives. Results The results showed that all of the WSC samples exhibit great fat- and cholesterol-binding capacities. Within the testing range, 1 g of WSC sample could absorb 2–8 g of peanut oil or 50–65 mg of cholesterol, which are both significantly higher than the ability of cellulose to do the same. Meanwhile, all the WSC samples were proven to be able to inhibit pancreatic lipase activity to some extent. Discussion Based on the results, we suggest that there is a significant correlation between the binding capacity of WSC and its Mw, as WSC2 (∼3,000 Da) shows the highest fat- and cholesterol-binding capacities (7.08 g g−1 and 63.48 mg g−1, respectively), and the binding ability of WSC declines as its Mw increases or decreases from 3,000 Da. We also suggest WSC as an excellent resource in the development of functional foods against obesity for its adsorption, electrostatic binding and entrapment of cholesterol, fat, sterols and triglycerides in the diet.


Journal of the Science of Food and Agriculture | 2017

Proximate composition, amino acid and fatty acid profiles of marine snail Rapana venosa meat, visceral mass and operculum

Fenglei Luo; Ronge Xing; Xueqin Wang; Quancai Peng; Pengcheng Li

BACKGROUND Rapana venosa (Rv), an important marine snail, demonstrates an increasing nutritional and economic importance. However, there is still limited information available on their nutritional composition. The present study highlights and provides new information on the proximate composition, amino acid and fatty acid profiles of different body parts of Rv, aiming for its better application and research. RESULTS The operculum contained a high amount of protein and flavor amino acids. The edible tissues, including meat and visceral mass, were valuable sources of essential amino acids (EAA) apart from methionine and cysteine. In addition, the meat contained high amount of taurine. Fatty acid analysis indicated that the edible tissues contained high amounts of ω3 fatty acids, especially eicosapentaenoic acid (EPA) (C20:5ω3) and docosahexaenoic acid (DHA) (C22:6ω3), and had a low ω6/ω3 fatty acid ratio. Interestingly, significantly higher concentrations of most nutritional elements such as fat, EAA, EPA and DHA, were found in the visceral mass compared to those in the meat. CONCLUSION The operculum of Rv may became a very interesting source for some protein and flavor peptide development, and the edible parts of Rv may be utilized for special dietary applications requiring high amounts of taurine, EPA, DHA and a lower ω6/ω3 fatty acid ratio.

Collaboration


Dive into the Xueqin Wang's collaboration.

Top Co-Authors

Avatar

Pengcheng Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huahua Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ronge Xing

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Song Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaolin Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rongfeng Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kecheng Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuhao Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yukun Qin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Yue

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge