Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueyan Fu is active.

Publication


Featured researches published by Xueyan Fu.


Advances in Nutrition | 2012

Vitamin K Nutrition, Metabolism, and Requirements: Current Concepts and Future Research

Martin J. Shearer; Xueyan Fu; Sarah L. Booth

In 2001, the US Food and Nutrition Board concluded that there were insufficient data with which to establish a RDA for vitamin K, in large part because of a lack of robust endpoints that reflected adequacy of intake. Knowledge of the relative bioavailability of multiple vitamin K forms was also poor. Since then, stable isotope methodologies have been applied to the assessment of the bioavailability of the major dietary form of vitamin K in its free state and when incorporated into a plant matrix. There is a need for stable isotope studies with enhanced sensitivity to expand knowledge of the bioavailability, absorption, disposition, and metabolism of different molecular forms of vitamin K. Another area for future research stems from evidence that common polymorphisms or haplotypes in certain key genes implicated in vitamin K metabolism might affect nutritional requirements. Thus far, much of this evidence is indirect via effects on warfarin dose requirements. In terms of clinical endpoints, vitamin K deficiency in early infancy continues to be a leading cause of intracranial bleeding even in developed countries and the reasons for its higher prevalence in certain Asian countries has not been solved. There is universal consensus for the need for vitamin K prophylaxis in newborns, but the effectiveness of any vitamin K prophylactic regimen needs to be based on sound nutritional principles. In contrast, there is still a lack of suitable biomarkers or clinical endpoints that can be used to determine vitamin K requirements among adults.


Kidney International | 2013

Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease

Kristin M. McCabe; Sarah L. Booth; Xueyan Fu; Navid Shobeiri; Judith J. Pang; Michael A. Adams; Rachel M. Holden

The leading cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease, with vascular calcification being a key modifier of disease progression. A local regulator of vascular calcification is vitamin K. This γ-glutamyl carboxylase substrate is an essential cofactor in the activation of several extracellular matrix proteins that inhibit calcification. Warfarin, a common therapy in dialysis patients, inhibits the recycling of vitamin K and thereby decreases the inhibitory activity of these proteins. In this study, we sought to determine whether modifying vitamin K status, either by increasing dietary vitamin K intake or by antagonism with therapeutic doses of warfarin, could alter the development of vascular calcification in male Sprague-Dawley rats with adenine-induced CKD. Treatment of CKD rats with warfarin markedly increased pulse pressure and pulse wave velocity, as well as significantly increased calcium concentrations in the thoracic aorta (3-fold), abdominal aorta (8-fold), renal artery (4-fold), and carotid artery (20-fold). In contrast, treatment with high dietary vitamin K1 increased vitamin K tissue concentrations (10-300-fold) and blunted the development of vascular calcification. Thus, vitamin K has an important role in modifying mechanisms linked to the susceptibility of arteries to calcify in an experimental model of CKD.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis

Yinan Yuan; Jeng-Der Chung; Xueyan Fu; Virgil Ed Johnson; Priya Ranjan; Sarah L. Booth; Scott A. Harding; Chung-Jui Tsai

Isochorismate synthase (ICS) converts chorismate to isochorismate for the biosynthesis of phylloquinone, an essential cofactor for photosynthetic electron transport. ICS is also required for salicylic acid (SA) synthesis during Arabidopsis defense. In several other species, including Populus, SA is derived primarily from the phenylpropanoid pathway. We therefore sought to investigate ICS regulation in Populus to learn the extent of ICS involvement in SA synthesis and defense. Arabidopsis harbors duplicated AtICS genes that differ in their exon-intron structure, basal expression, and stress inducibility. In contrast, we found a single ICS gene in Populus and six other sequenced plant genomes, pointing to the AtICS duplication as a lineage-specific event. The Populus ICS encodes a functional plastidic enzyme, and was not responsive to stresses that stimulated phenylpropanoid accumulation. Populus ICS underwent extensive alternative splicing that was rare for the duplicated AtICSs. Sequencing of 184 RT-PCR Populus clones revealed 37 alternative splice variants, with normal transcripts representing ≈50% of the population. When expressed in Arabidopsis, Populus ICS again underwent alternative splicing, but did not produce normal transcripts to complement AtICS1 function. The splice-site sequences of Populus ICS are unusual, suggesting a causal link between junction sequence, alternative splicing, and ICS function. We propose that gene duplication and alternative splicing of ICS evolved independently in Arabidopsis and Populus in accordance with their distinct defense strategies. AtICS1 represents a divergent isoform for inducible SA synthesis during defense. Populus ICS primarily functions in phylloquinone biosynthesis, a process that can be sustained at low ICS transcript levels.


Journal of Nutrition | 2012

Deuterium-Labeled Phylloquinone Has Tissue-Specific Conversion to Menaquinone-4 among Fischer 344 Male Rats

Ala Al Rajabi; Sarah L. Booth; James W. Peterson; Sang Woon Choi; John W. Suttie; M. Kyla Shea; Benchun Miao; Michael A. Grusak; Xueyan Fu

Phylloquinone (PK) is converted into menaquinone-4 (MK-4) via side chain removal-addition. Stable isotope use is an effective approach to identify the tissue location of this conversion, which is currently unknown. Following a 14-d PK-deficient diet, male Fischer 344 rats (8 mo; n = 15) were fed 1.6 mg deuterium-labeled PK (L-PK) per kg diet for 0 (control), 1 d (PK-1d), and 7 d (PK-7d). Both L-PK and deuterium-labeled MK-4 (L-MK-4) were detected in tissues in PK-1d and PK-7d, although the results varied. Whereas some tissues had an overall increase in MK-4 in response to L-PK, total brain, testes, and fat MK-4 concentrations did not. In contrast, L-MK-4 concentrations increased in all 3 tissues. The deuterium label was found only on the L-MK-4 naphthoquinone ring, confirming the need for side chain removal for the formation of MK-4. Labeled menadione (MD) was detected in urine and serum in PK-1d and PK-7d, confirming its role as an intermediate. A Caco-2 cell monolayer model was used to study the role of the enterocytes in the conversion process. Neither MK-4 nor MD was detected in Caco-2 cells treated with PK. However, when Caco-2 cells were treated with MD, MK-4 was formed. Similarly, MK-4 was formed in response to MD-treated 293T kidney cells, but not HuH7 liver cells. These data demonstrate that MK-4 is the predominant form of vitamin K in multiple tissues, but there appears to be a tissue-specific regulation for the conversion of PK to MK-4.


Journal of Chromatography B | 2014

Quantification of phylloquinone and menaquinones in feces, serum, and food by high-performance liquid chromatography–mass spectrometry

J. Philip Karl; Xueyan Fu; Gregory G. Dolnikowski; Edward Saltzman; Sarah L. Booth

Vitamin K, comprising phylloquinone (PK) and menaquinones (MKn), is a family of vitamers found in multiple biological and environmental matrices. Advancing emerging evidence for novel and distinct physiologic roles of these vitamers in human health and disease necessitates sensitive and selective methods for quantifying PK and MKn in these matrices. We developed a novel method employing high-performance liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-APCI-MS) for simultaneous quantification of 11 vitamin K vitamers that can be applied in feces, serum and food. Minimal detectable concentrations of vitamin K vitamers ranged from 1 pmol/g to 30 pmol/g. Limits of quantification ranged from 5 pmol/g to 90 pmol/g. Inter-assay and intra-assay variations were <17% and <8%, respectively, in food, and <12% and <8%, respectively, in feces. Recovery exceeded 80% for all vitamers in both food and feces. The method successfully quantified PK and MKn concentrations in rat chow, feces and serum. In summary, this LC-APCI-MS method provides a sensitive and selective tool for quantifying vitamin K vitamers in feces, serum and food. This method can be applied in human and animal studies examining the role of vitamin K vitamers derived from the diet and gut bacteria synthesis in health and disease.


Analytical Chemistry | 2009

Measurement of Deuterium-Labeled Phylloquinone in Plasma by High-Performance Liquid Chromatography/Mass Spectrometry

Xueyan Fu; James W. Peterson; Mona Hdeib; Sarah L. Booth; Michael A. Grusak; Alice H. Lichtenstein; Gregory G. Dolnikowski

Phylloquinone (vitamin K(1)) is a lipophilic compound present in plasma at low concentrations, which presents technical challenges for determining its bioavailability or metabolic fate using stable isotopes. We developed a method to simultaneously measure unlabeled and deuterium-labeled phylloquinone concentrations in plasma specimens using high-performance liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization (LC-APCI/MS). Phylloquinone was extracted from plasma using hexane, further purified by solid-phase extraction, and then quantified using high-performance liquid chromatography with an APCI/MS as a detector. Plotting the expected versus the measured amount of serial dilutions of either unlabeled or labeled phylloquinone gave correlation coefficients (R) of 0.999 for both compounds. The minimum detectable concentrations of unlabeled and labeled phylloquinone were 0.05 and 0.08 pmol/injection, respectively. Pooled plasma samples spiked with between 0.5 and 32 nmol phylloquinone/L gave average recoveries of 96.7% with 5.4% relative standard deviation (RSD) for unlabeled phylloquinone and 96.2% with 6.6% RSD for labeled phylloquinone. Plasma phylloquinone concentrations determined by LC-fluorescence and LC-APCI/MS methods from healthy subjects (n = 17) were not statistically different (P = 0.13). The LC-APCI/MS method is a sensitive technique for simultaneous determination of both unlabeled and labeled phylloquinone and can be applied to bioavailability studies.


Journal of Nutrition | 2012

Age Group and Sex Do Not Influence Responses of Vitamin K Biomarkers to Changes in Dietary Vitamin K

Jennifer T. Truong; Xueyan Fu; Edward Saltzman; Ala Al Rajabi; Gerard E. Dallal; Caren M. Gundberg; Sarah L. Booth

Inadequate vitamin K intake has been associated with abnormal soft tissue calcification. Older adults may have insufficient intakes of vitamin K and respond less to vitamin K supplementation compared with younger adults. However, little is known about the determinants that influence the response to vitamin K supplementation. Our primary objective was to assess dietary and nondietary determinants of vitamin K status in healthy younger and older adults. In a nonrandomized, nonmasked study, 21 younger (18-40 y) and 21 older (55-80 y) men and women consumed a baseline diet (200 μg phylloquinone/d) for 5 d, a phylloquinone-restricted diet (10 μg phylloquinone/d) for 28 d, and a phylloquinone-supplemented diet (500 μg phylloquinone/d) for 28 d. Changes in vitamin K status markers in response to vitamin K depletion and repletion were studied and the influences of BMI, body fat, and circulating TG were assessed by including them as covariates in the model. Despite baseline differences in measures of vitamin K status, plasma phylloquinone tended to increase (P = 0.07) and the percentage of uncarboxylated osteocalcin and uncarboxylated prothrombin both improved with phylloquinone supplementation (P < 0.007), regardless of age group or sex. Only the excretion of urinary menadione, a vitamin K metabolite, was greater among younger adults in response to depletion than in older adults (P = 0.012), regardless of sex. Adiposity measures and circulating TG did not predict response of any measures. In conclusion, poor vitamin K status can be similarly improved with vitamin K supplementation, regardless of age group or sex.


Journal of Nutrition | 2008

9-Cis Retinoic Acid Reduces 1α,25-Dihydroxycholecalciferol-Induced Renal Calcification by Altering Vitamin K-Dependent γ-Carboxylation of Matrix γ-Carboxyglutamic Acid Protein in A/J Male Mice

Xueyan Fu; Xiang-Dong Wang; Heather Mernitz; Reidar Wallin; M. Kyla Shea; Sarah L. Booth

Matrix gamma-carboxyglutamic acid protein (MGP), a vitamin K-dependent protein, is involved in regulation of tissue calcification. We previously reported that 9-cis retinoic acid (RA) mitigates 1alpha,25-dihydroxycholecalciferol [1,25(OH)(2)D3]-induced renal calcification in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer A/J male mouse model. This raised the question if the mechanism(s) underlying this calcification involves vitamin K. We assessed expression and vitamin K dependent gamma-carboxylation of MGP and vitamin K concentrations [phylloquinone (PK), as well as its conversion product, menaquinone-4 (MK-4)] in tissues obtained from NNK-injected A/J male mice fed 1,25(OH)(2)D3 (2.5 microg/kg diet; D group) +/- RA (15 mg/kg diet) for 20 wk. Renal calcification was only observed in the D group (2/10; 20% of the group). Renal MGP mRNA and uncarboxylated MGP (ucMGP) increased in response to D (P < 0.05) but not in response to RA or RA + D. In contrast, gamma-carboxylated MGP increased to 2.2-fold of the control in response to D+RA (P < 0.05) but not in response to RA or D alone. Although all diets contained equal amounts of PK, the kidney MK-4 concentration was higher in the D group (P < 0.05) and lower in the RA group (P < 0.05) compared with the RA+D or control groups. Renal PK concentrations were lower in the RA and RA+D groups than in the control and D groups (P < 0.05). These data suggest that 9-cis RA mitigated 1,25(OH)(2)D3-induced renal calcification by modifying the 1,25(OH)(2)D3-induced increase in ucMGP. The mechanisms by which 9-cis RA and 1,25(OH)(2)D3 alter vitamin K concentrations warrant further investigation.


The American Journal of Clinical Nutrition | 2015

α-Tocopherol disappearance rates from plasma depend on lipid concentrations: studies using deuterium-labeled collard greens in younger and older adults

Maret G. Traber; Scott W. Leonard; Gerd Bobe; Xueyan Fu; Edward Saltzman; Michael A. Grusak; Sarah L. Booth

BACKGROUND Little is known about α-tocopherols bioavailability as a constituent of food or its dependence on a subjects age. OBJECTIVE To evaluate the α-tocopherol bioavailability from food, we used collard greens grown in deuterated water ((2)H collard greens) as a source of deuterium-labeled ((2)H) α-tocopherol consumed by younger and older adults in a post hoc analysis of a vitamin K study. DESIGN Younger (mean ± SD age: 32 ± 7 y; n = 12 women and 9 men) and older (aged 67 ± 8 y; n = 8 women and 12 men) adults consumed a test breakfast that included 120 g (2)H collard greens (1.2 ± 0.1 mg (2)H-α-tocopherol). Plasma unlabeled α-tocopherol and (2)H-α-tocopherol were measured by using liquid chromatography-mass spectrometry from fasting (>12 h) blood samples drawn before breakfast (0 h) and at 24, 48, and 72 h and from postprandial samples collected at 4, 5, 6, 7, 9, 12, and 16 h. RESULTS Times (12.6 ± 2.5 h) of maximum plasma (2)H-α-tocopherol concentrations (0.82% ± 0.59% total α-tocopherol), fractional disappearance rates (0.63 ± 0.26 pools/d), half-lives (30 ± 11 h), and the minimum estimated (2)H-α-tocopherol absorbed (24% ± 16%) did not vary between age groups or sexes (n = 41). Unlabeled α-tocopherol concentrations were higher in older adults (26.4 ± 8.6 μmol/L) than in younger adults (19.3 ± 4.2 μmol/L; P = 0.0019) and correlated with serum lipids (r = 0.4938, P = 0.0012). In addition, (2)H-α-tocopherol half-lives were correlated with lipids (r = 0.4361, P = 0.0044). CONCLUSIONS Paradoxically, α-tocopherol remained in circulation longer in participants with higher serum lipids, but the (2)H-α-tocopherol absorbed was not dependent on the plasma lipid status. Neither variable was dependent on age. These data suggest that plasma α-tocopherol concentrations are more dependent on mechanisms that control circulating lipids rather than those related to its absorption and initial incorporation into plasma. This trial was registered at clinicaltrials.gov as NCT0036232.


Journal of Agricultural and Food Chemistry | 2016

Measurement of Multiple Vitamin K Forms in Processed and Fresh-Cut Pork Products in the U.S. Food Supply

Xueyan Fu; Xiaohua Shen; Emily G. Finnan; David B. Haytowitz; Sarah L. Booth

Vitamin K food composition data have historically been limited to plant-based phylloquinone (vitamin K1). The purpose of this study was to expand analysis of vitamin K to animal products and to measure phylloquinone and 10 forms of menaquinones (vitamin K2) in processed and fresh-cut pork products. Nationally representative samples of processed pork products (n = 28) were obtained through USDAs National Food and Nutrition Analysis Program, and fresh pork (six cuts; n = 5 per cut) and bacon (n = 4) were purchased from local retail outlets. All samples were analyzed by high-performance liquid chromatography (phylloquinone and menaquinone-4) and atmospheric-pressure chemical ionization-liquid chromatography-mass spectrometry (menaquinone-5 to menaquinone-13). Although low in phylloquinone (<2.1 ± 0.5 μg of phylloquinone per 100 g), all processed pork products and fresh pork cuts contained menaquinone-4, menaquinone-10, and menaquinone-11 (range: [35.1 ± 11.0]-[534 ± 89.0] μg of menaquinones per 100 g). The total menaquinone contents of processed pork products were correlated with fat contents (r = 0.935). In summary, processed and fresh-cut pork products are a rich dietary source of menaquinones that are currently unaccounted for in assessment of vitamin K in the food supply.

Collaboration


Dive into the Xueyan Fu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Grusak

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge