Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueying Yan is active.

Publication


Featured researches published by Xueying Yan.


Journal of the American Chemical Society | 2013

Multifunctional Mesoporous Silica-Coated Graphene Nanosheet Used for Chemo-Photothermal Synergistic Targeted Therapy of Glioma

Yi Wang; Kaiyuan Wang; Jianfeng Zhao; Xingang Liu; Juan Bu; Xueying Yan; Rongqin Huang

Current therapy of malignant glioma in clinic is unsatisfactory with poor patient compliance due to low therapeutic efficiency and strong systemic side effects. Herein, we combined chemo-photothermal targeted therapy of glioma within one novel multifunctional drug delivery system. A targeting peptide (IP)-modified mesoporous silica-coated graphene nanosheet (GSPI) was successfully synthesized and characterized, and first introduced to the drug delivery field. A doxorubicin (DOX)-loaded GSPI-based system (GSPID) showed heat-stimulative, pH-responsive, and sustained release properties. Cytotoxicity experiments demonstrated that combined therapy mediated the highest rate of death of glioma cells compared to that of single chemotherapy or photothermal therapy. Furthermore, the IP modification could significantly enhance the accumulation of GSPID within glioma cells. These findings provided an excellent drug delivery system for combined therapy of glioma due to the advanced chemo-photothermal synergistic targeted therapy and good drug release properties of GSPID, which could effectively avoid frequent and invasive dosing and improve patient compliance.


Biomaterials | 2015

Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system.

Hui Yao; Kaiyuan Wang; Yi Wang; Shanshan Wang; Jianfeng Li; Jinning Lou; Liya Ye; Xueying Yan; Weiyue Lu; Rongqin Huang

Successful glioma gene therapy lays on two important factors, the therapeutic genes and efficient delivery vehicles to cross the blood-brain barrier (BBB) and reach gliomas. In this work, a new gene vector was constructed based on dendrigraft poly-l-lysines (DGL) and polyethyleneglycol (PEG), conjugated with a cell-penetrating peptide, the nucleolar translocation signal (NoLS) sequence of the LIM Kinase 2 (LIMK2) protein (LIMK2 NoLS peptide, LNP), yielding DGL-PEG-LNP. Plasmid DNA encoding inhibitor of growth 4 (ING4) was applied as the therapeutic gene. DGL-PEG-LNP/DNA nanoparticles (NPs) were monodispersed, with a mean diameter of 90.6 ± 8.9 nm. The conjugation of LNP significantly enhanced the BBB-crossing efficiency, cellular uptake and gene expression within tumor cells. Mechanism studies suggested the involvement of energy, caveolae-mediated endocytosis and macropinocytosis in cellular uptake of LNP-modified NPs. MTT results showed that no apparent cytotoxicity was observed when cells were treated with synthesized vectors. Furthermore, LNP-modified NPs mediated strongest and most intensive apoptosis on the tumor site, and the longest median survival time of glioma-bearing mice. All the results demonstrated that LNP is a kind of efficient CPPs especially for BBB-crossing application, and DGL-PEG-LNP/DNA is a potential non-viral platform for glioma gene therapy via intravenous administration.


Acta Biomaterialia | 2015

Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy.

Kaiyuan Wang; Hui Yao; Ying Meng; Yi Wang; Xueying Yan; Rongqin Huang

Tumor-specific therapeutic platforms designed for combined tumor therapy has recently received wide attention. In this work, a new HB5 aptamer-functionalized mesoporous silica-carbon based doxorubicin (DOX)-loaded system (MSCN-PEG-HB5/DOX) was successfully constructed and characterized for chemo-photothermal combined therapy of human epithelial growth factor receptor 2 (HER2)-positive breast cancer cells. The in vitro release result showed that MSCN-PEG-HB5/DOX exhibited pH-sensitive and NIR-triggered release manner. HB5-modified nanoparticles showed significant higher cellular uptake in HER2-positive breast cancer cells (SK-BR-3) but not in normal breast epithelial cells (MCF-10A), compared to unmodified counterparts. The intracellular uptake of functional nanoparticles was mainly based on the receptor-mediated mechanism which was energy-dependent. Cytotoxicity experiments demonstrated that combined therapy induced highest cell killing effect compared to chemotherapy and photothermal therapy alone. The combination index (CI) was 0.253 indicating the synergistic effect of chemotherapy and photothermal therapy. These findings suggested that MSCN-PEG-HB5/DOX was a potential chemo-photothermal therapeutic platform targeting to HER2-positive breast cancers.


International Journal of Pharmaceutics | 2014

Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan

Chenxi Li; Chunyan Li; Zheshuo Liu; Qiuhong Li; Xueying Yan; Yu Liu; Weiyue Lu

The objective of this study was to construct a new in situ gel system based on the combination of poloxamer 407 and carrageenan (carrageenan-poloxamer 407 hydrogel, CPH) for intranasal delivery of ketorolac tromethamine. CPH showed potassium ion concentration - dependent erosion characteristics which ensured slow erosion in aqueous environment containing potassium ion at the physiological level. Loading with ketorolac tromethamine influenced erosion, drug release and thermosensitive properties of CPH. CPH containing 15% ketorolac tromethamine showed suitable gelation temperature (near 35°C) and in vitro sustained release profiles. Pharmacokinetic study of intranasal CPH containing 15% ketorolac tromethamine in rats demonstrated enhanced absolute bioavailability (68.8 ± 23.3%) and prolonged mean residence time (8.8 ± 3.5h) in comparison with the intranasal solution group (24.8 ± 13.8%, 3.9 ± 0.6h). Nasal ciliotoxicity evaluation on an in situ toad palate model preliminarily showed the safety of CPH for intranasal use. All results suggested the potential of CPH as a new sustained - release platform for the intranasal delivery of ketorolac tromethamine.


Advanced Healthcare Materials | 2014

A general strategy for dual-triggered combined tumor therapy based on template semi-graphitized mesoporous silica nanoparticles.

Yi Wang; Kaiyuan Wang; Xueying Yan; Rongqin Huang

A general strategy is developed for dual-triggered chemo-photothermal tumor therapy based on template semi-graphitized mesoporous silica nanoparticles (TsGMSN). The strategy endues classic MSN with new charming properties, while easily escaping from toxicity of the surfactant. The doxorubicin-loaded system (TsGMSND) exhibits synergistic heat-stimulative, pH-responsive, and sustained release, and effective combined tumor therapy.


International Journal of Pharmaceutics | 2015

Mucin-controlled drug release from mucoadhesive phenylboronic acid-rich nanoparticles

Chunyan Li; Zheshuo Liu; Xueying Yan; Weiyue Lu; Yu Liu

Phenylboronic acid-rich nanoparticles (PBNPs) were designed as a novel mucoadhesive vaginal drug delivery system. PBNPs effectively adsorbed mucin in vitro and could be easily loaded with the model drug interferon (IFN). Drug release from PBNPs was controlled by the presence of mucin. Neither obvious cytotoxicity nor vaginal histological changes in mice caused by PBNPs or IFN-loaded PBNPs were observed.


International Journal of Nanomedicine | 2016

Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement

Chunyan Li; Zhigang Huang; Zheshuo Liu; Liqian Ci; Zhepeng Liu; Yu Liu; Xueying Yan; Weiyue Lu

Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs) demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN) in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S) were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050), good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA) assay of IFN demonstrated that PBNP-S could stay in the vagina and maintain intravaginal IFN level for much longer time than IFN solution (24 hours vs several hours) without obvious histological irritation to vaginal mucosa after vaginal administration to mice. In summary, good stability, easy loading and controllable release of protein therapeutics, in vitro and in vivo mucoadhesive properties and local safety of PBNP-S suggested it as a promising nanoscale mucoadhesive drug delivery system for vaginal administration of protein therapeutics.


ACS Nano | 2014

Synthesis of Core–Shell Graphitic Carbon@Silica Nanospheres with Dual-Ordered Mesopores for Cancer-Targeted Photothermochemotherapy

Yi Wang; Kaiyuan Wang; Ren Zhang; Xingang Liu; Xueying Yan; Jianxin Wang; Ernst Wagner; Rongqin Huang


Biomaterials | 2016

Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres

Ying Meng; Shanshan Wang; Chengyi Li; Min Qian; Xueying Yan; Shuangchao Yao; Xiyue Peng; Yi Wang; Rongqin Huang


International Journal of Pharmaceutics | 2016

TKD peptide as a ligand targeting drug delivery systems to memHsp70-positive breast cancer.

Ying Meng; Shanshan Wang; Chengyi Li; Min Qian; Yufan Zheng; Xueying Yan; Rongqin Huang

Collaboration


Dive into the Xueying Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaiyuan Wang

Heilongjiang University of Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge