Xugang Li
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xugang Li.
Nature Cell Biology | 2008
Shuzhen Men; Yohann Boutté; Yoshihisa Ikeda; Xugang Li; Klaus Palme; York-Dieter Stierhof; Marie-Andrée Hartmann; Thomas Moritz; Markus Grebe
The polarization of yeast and animal cells relies on membrane sterols for polar targeting of proteins to the plasma membrane, their polar endocytic recycling and restricted lateral diffusion. However, little is known about sterol function in plant-cell polarity. Directional root growth along the gravity vector requires polar transport of the plant hormone auxin. In Arabidopsis, asymmetric plasma membrane localization of the PIN–FORMED2 (PIN2) auxin transporter directs root gravitropism. Although the composition of membrane sterols influences gravitropism and localization of two other PIN proteins, it remains unknown how sterols contribute mechanistically to PIN polarity. Here, we show that correct membrane sterol composition is essential for the acquisition of PIN2 polarity. Polar PIN2 localization is defective in the sterol-biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) which displays altered sterol composition, PIN2 endocytosis, and root gravitropism. At the end of cytokinesis, PIN2 localizes initially to both newly formed membranes but subsequently disappears from one. By contrast, PIN2 frequently remains at both daughter membranes in endocytosis-defective cpi1-1 cells. Hence, sterol composition affects post-cytokinetic acquisition of PIN2 polarity by endocytosis, suggesting a mechanism for sterol action on establishment of asymmetric protein localization.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Franck Anicet Ditengou; William Teale; Philip Kochersperger; Karl Andreas Flittner; Irina Kneuper; Eric van der Graaff; Hugues Nziengui; Francesco Pinosa; Xugang Li; Roland Nitschke; Thomas Laux; Klaus Palme
Lateral roots are initiated postembryonically in response to environmental cues, enabling plants to explore efficiently their underground environment. However, the mechanisms by which the environment determines the position of lateral root formation are unknown. In this study, we demonstrate that in Arabidopsis thaliana lateral root initiation can be induced mechanically by either gravitropic curvature or by the transient bending of a root by hand. The plant hormone auxin accumulates at the site of lateral root induction before a primordium starts to form. Here we describe a subcellular relocalization of PIN1, an auxin transport protein, in a single protoxylem cell in response to gravitropic curvature. This relocalization precedes auxin-dependent gene transcription at the site of a new primordium. Auxin-dependent nuclear signaling is necessary for lateral root formation; arf7/19 double knock-out mutants normally form no lateral roots but do so upon bending when the root tip is removed. Signaling through arf7/19 can therefore be bypassed by root bending. These data support a model in which a root-tip-derived signal acts on downstream signaling molecules that specify lateral root identity.
The Plant Cell | 2009
Jiaqiang Sun; Yingxiu Xu; Songqing Ye; Hongling Jiang; Qian Chen; Fang Liu; Wenkun Zhou; Rong Chen; Xugang Li; Olaf Tietz; Xiaoyan Wu; Jerry D. Cohen; Klaus Palme; Chuanyou Li
Plant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE α1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.
The Plant Cell | 2011
Qian Chen; Jiaqiang Sun; Qingzhe Zhai; Wenkun Zhou; Linlin Qi; Li Xu; Bao Wang; Rong Chen; Hongling Jiang; Jing Qi; Xugang Li; Klaus Palme; Chuanyou Li
This study investigates the mechanisms underlying jasmonate-induced inhibition of primary root growth. Jasmonate inhibits the expression of two AP2-domain transcription factors, PLETHORA1 and 2, in a MYC2-dependent fashion. MYC2 is suggested to integrate the jasmonate and auxin pathways during the maintenance of the root stem cell niche. The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin.
Plant Physiology | 2008
Jing Qi; Qian Qian; Qingyun Bu; Shuyu Li; Qian Chen; Jiaqiang Sun; Wenxing Liang; Yihua Zhou; Chengcai Chu; Xugang Li; Fugang Ren; Klaus Palme; Bingran Zhao; Jinfeng Chen; Mingsheng Chen; Chuanyou Li
The size and shape of the plant leaf is an important agronomic trait. To understand the molecular mechanism governing plant leaf shape, we characterized a classic rice (Oryza sativa) dwarf mutant named narrow leaf1 (nal1), which exhibits a characteristic phenotype of narrow leaves. In accordance with reduced leaf blade width, leaves of nal1 contain a decreased number of longitudinal veins. Anatomical investigations revealed that the culms of nal1 also show a defective vascular system, in which the number and distribution pattern of vascular bundles are altered. Map-based cloning and genetic complementation analyses demonstrated that Nal1 encodes a plant-specific protein with unknown biochemical function. We provide evidence showing that Nal1 is richly expressed in vascular tissues and that mutation of this gene leads to significantly reduced polar auxin transport capacity. These results indicate that Nal1 affects polar auxin transport as well as the vascular patterns of rice plants and plays an important role in the control of lateral leaf growth.
New Phytologist | 2011
Jiaqiang Sun; Qian Chen; Linlin Qi; Hongling Jiang; Shuyu Li; Yingxiu Xu; Fang Liu; Wenkun Zhou; Jianwei Pan; Xugang Li; Klaus Palme; Chuanyou Li
The subcellular distribution of the PIN-FORMED (PIN) family of auxin transporters plays a critical role in auxin gradient-mediated developmental processes, including lateral root formation and gravitropic growth. Here, we report two distinct aspects of CORONATINE INSENSITIVE 1 (COI1)- and AUXIN RESISTANT 1 (AXR1)-dependent methyl jasmonate (MeJA) effects on PIN2 subcellular distribution: at lower concentration (5 μM), MeJA inhibits PIN2 endocytosis, whereas, at higher concentration (50 μM), MeJA reduces PIN2 accumulation in the plasma membrane. We show that mutations of ASA1 (ANTHRANILATE SYNTHASE a1) and the TIR1/AFBs (TRANSPORT INHIBITOR RESPONSE 1/AUXIN-SIGNALING F-BOX PROTEINs) auxin receptor genes impair the inhibitory effect of 5 μM MeJA on PIN2 endocytosis, suggesting that a lower concentration of jasmonate inhibits PIN2 endocytosis through interaction with the auxin pathway. In contrast, mutations of ASA1 and the TIR1/AFBs auxin receptor genes enhance, rather than impair, the reduction effect of 50 μM MeJA on the plasma membrane accumulation of PIN2, suggesting that this action of jasmonate is independent of the auxin pathway. In addition to the MeJA effects on PIN2 endocytosis and plasma membrane residence, we also show that MeJA alters lateral auxin redistribution on gravi-stimulation, and therefore impairs the root gravitropic response. Our results highlight the importance of jasmonate-auxin interaction in the coordination of plant growth and the adaptation response.
Molecular Plant | 2008
William Teale; Franck Anicet Ditengou; Alexander Dovzhenko; Xugang Li; A.M. Molendijk; Benedetto Ruperti; Ivan A. Paponov; Klaus Palme
The regulation of plant growth responds to many stimuli. These responses allow environmental adaptation, thereby increasing fitness. In many cases, the relay of information about a plants environment is through plant hormones. These messengers integrate environmental information into developmental pathways to determine plant shape. This review will use, as an example, auxin in the root of Arabidopsis thaliana to illustrate the complex nature of hormonal signal processing and transduction. It will then make the case that the application of a systems-biology approach is necessary, if the relationship between a plants environment and its growth/developmental responses is to be properly understood.
The Plant Cell | 2013
Xin Yu; Taras Pasternak; Monika Eiblmeier; Franck Anicet Ditengou; Philip Kochersperger; Jiaqiang Sun; Hui Wang; Heinz Rennenberg; William Teale; Ivan A. Paponov; Wenkun Zhou; Chuanyou Li; Xugang Li; Klaus Palme
Plastid-localized glutathione reductase2 regulates root growth and root meristem maintenance through modulation of its GSH redox status, resulting in regulation of downstream effectors of the auxin/PLETHORA pathway, as well as of some auxin/ PLETHORA-independent pathways. This function differs from that of glutathione reductase1, which is not essential for plant development. Glutathione is involved in thiol redox signaling and acts as a major redox buffer against reactive oxygen species, helping to maintain a reducing environment in vivo. Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) into reduced glutathione (GSH). The Arabidopsis thaliana genome encodes two GRs: GR1 and GR2. Whereas the cytosolic/peroxisomal GR1 is not crucial for plant development, we show here that the plastid-localized GR2 is essential for root growth and root apical meristem (RAM) maintenance. We identify a GR2 mutant, miao, that displays strong inhibition of root growth and severe defects in the RAM, with GR activity being reduced to ∼50%. miao accumulates high levels of GSSG and exhibits increased glutathione oxidation. The exogenous application of GSH or the thiol-reducing agent DTT can rescue the root phenotype of miao, demonstrating that the RAM defects in miao are triggered by glutathione oxidation. Our in silico analysis of public microarray data shows that auxin and glutathione redox signaling generally act independently at the transcriptional level. We propose that glutathione redox status is essential for RAM maintenance through both auxin/PLETHORA (PLT)-dependent and auxin/PLT-independent redox signaling pathways.
Plant Cell Reports | 2005
Songbiao Chen; Xugang Li; Xiang Liu; Hongling Xu; Kun Meng; Guifang Xiao; Xiaoli Wei; Feng Wang; Zhen Zhu
We investigated the potential of a novel double T-DNA vector for generating marker-free transgenic plants. Co-transformation methods using a double T-DNA vector or using mixture of two Agrobacterium tumefaciens strains were compared, and showed that the double T-DNA vector method could produce marker-free transgenic tobacco (Nicotiana tabacum L.) plants more efficiently. A dual marker double T-DNA vector was then constructed by assembling the green fluorescent protein (GFP) gene mgfp5 and the neomycin phosphotransferase gene nptII into the same T-DNA. The frequency of co-transformants produced by this vector was 56.3%. Co-expression of mgfp5 and nptII was found in 28 out of 29 T1 lines, and segregation of the reporter β-glucuronidase gene, gusA, from mgfp5 to nptII was found in 12 out of 29 T1 lines. Therefore, GFP could be used as a vital marker to improve the transformation efficiency and to easily monitor the segregation of marker genes, thus facilitating screening of marker-free progeny.
Journal of Cell Science | 2010
Yanyan Cui; Xugang Li; Qingguo Chen; Xin He; Qing Yang; Aili Zhang; Xin Yu; Hao Chen; Naiyou Liu; Qi Xie; Wei-Cai Yang; Jianru Zuo; Klaus Palme; Wei Li
Internalization and sorting of macromolecules are inherent properties of all eukaryotic cells that are achieved by vesicle trafficking. However, this process is relatively less understood in plants. An eight-subunit protein complex, BLOC-1, which is involved in endosomal transport from the endosomes to the lysosomes, has been identified in both human and mice. In this study, two homologous subunits of this complex, BLOS1 (or AtGCN5L1) and BLOS2, have been characterized in Arabidopsis. Both BLOS1 and BLOS2 interacted with SNX1 on the sorting endosomes. Inducible RNAi lines with reduced levels of BLOS1 had longer primary roots and more lateral roots. Consistently, PIN1 and PIN2 were increased in BLOS1 RNAi lines, implicating an impaired transport from the endosomes to the vacuoles. These results suggest that a putative BLOC-1 complex in Arabidopsis might mediate the vacuolar degradative transport through direct interaction with SNX1 to regulate the homeostasis of PIN1 and PIN2, which is important for plant growth and development.