Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where lin Xu is active.

Publication


Featured researches published by lin Xu.


Neuroscience Letters | 2007

Enhanced activity of GABA receptors inhibits glutamate release induced by focal cerebral ischemia in rat striatum

Changhan Ouyang; Lianjun Guo; Qing Lu; Xulin Xu; Hongxing Wang

Cerebral ischemia causes an excess release of glutamate, which can injure neurons. The striatum is one of the important regions vulnerable to hypoxia and ischemia. Using push-pull perfusion technique, we investigated the regulatory role of gamma-aminobutyric acid (GABA) and its receptors in modifying the amount of glutamate in rat striatum with ischemia. Perfusion with exogenous GABA (1 mM) inhibited cerebral ischemia-induced glutamate release by as much as 47%. We further characterized relative roles of subtype receptors of GABA on glutamate release by using pharmacological tools. While baclofen (500 microM), a GABA(B) receptor agonist, suppressed ischemia-induced glutamate release by 52%, GABA(B) receptor antagonist saclofen (500 microM) failed to produce a significant increase of glutamate release. The GABA(A) receptor agonist muscimol (500 microM) also reduced by 38% the release of glutamate induced by cerebral ischemia but the GABA(A) receptor antagonist bicuculline (500 microM) had very little effect. The present study demonstrates that the excessive release of glutamate or the overly activated glutamate receptor, triggered by cerebral ischemia, can be down-regulated by exogenous GABA or by increased activity of GABA receptors, especially the presynaptic GABA(B) receptors, which might be one of the important mechanisms to protect against striatum neuronal damage from over stimulation by excessive glutamate during ischemia.


PLOS ONE | 2014

Astrocytic toll-like receptor 3 is associated with ischemic preconditioning- induced protection against brain ischemia in rodents

Lin-na Pan; Wei Zhu; Yang Li; Xulin Xu; Lianjun Guo; Qing Lu; Jian Wang

Background Cerebral ischemic preconditioning (IPC) protects brain against ischemic injury. Activation of Toll-like receptor 3 (TLR3) signaling can induce neuroprotective mediators, but whether astrocytic TLR3 signaling is involved in IPC-induced ischemic tolerance is not known. Methods IPC was modeled in mice with three brief episodes of bilateral carotid occlusion. In vitro, IPC was modeled in astrocytes by 1-h oxygen-glucose deprivation (OGD). Injury and components of the TLR3 signaling pathway were measured after a subsequent protracted ischemic event. A neutralizing antibody against TLR3 was used to evaluate the role of TLR3 signaling in ischemic tolerance. Results IPC in vivo reduced brain damage from permanent middle cerebral artery occlusion in mice and increased expression of TLR3 in cortical astrocytes. IPC also reduced damage in isolated astrocytes after 12-h OGD. In astrocytes, IPC or 12-h OGD alone increased TLR3 expression, and 12-h OGD alone increased expression of phosphorylated NFκB (pNFκB). However, IPC or 12-h OGD alone did not alter the expression of Toll/interleukin receptor domain-containing adaptor-inducing IFNβ (TRIF) or phosphorylated interferon regulatory factor 3 (pIRF3). Exposure to IPC before OGD increased TRIF and pIRF3 expression but decreased pNFκB expression. Analysis of cytokines showed that 12-h OGD alone increased IFNβ and IL-6 secretion; 12-h OGD preceded by IPC further increased IFNβ secretion but decreased IL-6 secretion. Preconditioning with TLR3 ligand Poly I:C increased pIRF3 expression and protected astrocytes against ischemic injury; however, cells treated with a neutralizing antibody against TLR3 lacked the IPC- and Poly I:C-induced ischemic protection and augmentation of IFNβ. Conclusions The results suggest that IPC-induced ischemic tolerance is mediated by astrocytic TLR3 signaling. This reprogramming of TLR3 signaling by IPC in astrocytes may play an important role in suppression of the post-ischemic inflammatory response and thereby protect against ischemic damage. The mechanism may be via activation of the TLR3/TRIF/IRF3 signaling pathway.


Behavioural Brain Research | 2015

Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice

Pengcheng Huang; Cai Li; Tianli Fu; Dan Zhao; Zhen Yi; Qing Lu; Lianjun Guo; Xulin Xu

Chronic restraint stress (CRS) causes hippocampal neurodegeneration and hippocampus-dependent cognitive deficits. Flupirtine represents neuroprotective effects and we have previously shown that flupirtine can protect against memory impairment induced by acute stress. The present study aimed to investigate whether flupirtine could alleviate spatial learning and memory impairment and hippocampal apoptosis induced by CRS. CRS mice were restrained in well-ventilated Plexiglass tubes for 6h daily beginning from 10:00 to 16:00 for 21 consecutive days. Mice were injected with flupirtine (10mg/kg and 25mg/kg) or vehicle (10% DMSO) 30min before restraint stress for 21 days. After stressor cessation, the spatial learning and memory, dendritic spine density, injured neurons and the levels of Bcl-2, Bax, p-Akt, p-GSK-3β, p-Erk1/2 and synaptophysin of hippocampal tissues were examined. Our results showed that flupirtine significantly prevented spatial learning and memory impairment induced by CRS in the Morris water maze. In addition, flupirtine (10mg/kg and 25mg/kg) treatment alleviated neuronal apoptosis and the reduction of dendritic spine density and synaptophysin expression in the hippocampal CA1 region of CRS mice. Furthermore, flupirtine (10mg/kg and 25mg/kg) treatment significantly decreased the expression of Bax and increased the p-Akt and p-GSK-3β, and flupirtine (25mg/kg) treatment up-regulated the p-Erk1/2 in the hippocampus of CRS mice. These results suggested that flupirtine exerted protective effects on the CRS-induced cognitive impairment and hippocampal neuronal apoptosis, which is possibly associated with the activation of Akt/GSK-3β and Erk1/2 signaling pathways.


Acta Pharmacologica Sinica | 2012

Toll-like receptor 3 agonist Poly I:C protects against simulated cerebral ischemia in vitro and in vivo

Lin-na Pan; Wei Zhu; Cai Li; Xulin Xu; Lianjun Guo; Qing Lu

Aim:To examine the neuroprotective effects of the Toll-like receptor 3 (TLR3) agonist Poly I:C in acute ischemic models in vitro and in vivo.Methods:Primary astrocyte cultures subjected to oxygen-glucose deprivation (OGD) were used as an in vitro simulated ischemic model. Poly I:C was administrated 2 h before OGD. Cell toxicity was measured using MTT assay and LDH leakage assay. The levels of TNFα, IL-6 and interferon-β (IFNβ) in the media were measured using ELISA. Toll/interleukin receptor domain-containing adaptor-inducing IFNβ (TRIF) protein levels were detected using Western blot analysis. A mouse middle cerebral artery occlusion (MCAO) model was u sed for in vivo study. The animals were administered Poly I:C (0.3 mg/kg, im) 2 h before MCAO, and examined with neurological deficit scoring and TTC staining. The levels of TNFα and IL-6 in ischemic brain were measured using ELISA.Results:Pretreatment with Poly I:C (10 and 20 μg/mL) markedly attenuated OGD-induced astrocyte injury, and significantly raised the cell viability and reduced the LDH leakage. Poly I:C significantly upregulated TRIF expression accompanied by increased downstream IFNβ production. Moreover, Poly I:C significantly suppressed the pro-inflammatory cytokines TNFα and IL-6 production. In mice subjected to MCAO, administration of Poly I:C significantly attenuated the neurological deficits, reduced infarction volume, and suppressed the increased levels of TNFα and IL-6 in the ischemic striatum and cortex.Conclusion:Poly I:C pretreatment exerts neuroprotective and anti-inflammatory effects in the simulated cerebral ischemia models, and the neuroprotection is at least in part due to the activation of the TLR3-TRIF pathway.


Neurobiology of Learning and Memory | 2015

Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region

Pan Luo; Yun Lu; Chang-jun Li; Mei Zhou; Cheng Chen; Qing Lu; Xulin Xu; Zhi He; Lianjun Guo

Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression.


European Journal of Pharmacology | 2010

ZD7288-induced suppression of long-term potentiation was attenuated by exogenous NMDA at the Schaffer collateral–CA1 synapse in the rat in vivo

Wei He; Zhenyong Cheng; Gang Fu; Xulin Xu; Qing Lu; Lianjun Guo

Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels have been suggested to play an important role in the control of membrane excitability and rhythmic neuronal activity. Our previous study showed that the selective HCN channels blocker, ZD7288 (4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride) can block the induction of long-term potentiation (LTP) in perforant path-CA3 region in rat hippocampus in vivo. In the present study, we investigated the effect of ZD7288 on synaptic transmission and high frequency stimulation (HFS)-induced LTP in the Schaffer collateral-CA1 synapse of rat hippocampus in vivo, and examined the possible relations between activation of N-methyl-d-aspartate (NMDA) type of glutamate receptor and HCN channels for induction of LTP. Application of ZD7288 modulated synaptic transmission and produced a dose-dependent inhibition of the induction of LTP, and the inhibitory action was partially reversed by the application of NMDA. In addition, ZD7288, when given 30 min after HFS, did not alter the maintenance of LTP. The results suggest that ZD7288 has the ability to prevent the induction of LTP at the Schaffer collateral-CA1 synapse of rat hippocampus, and that this inhibitory effect is attenuated by direct activation of the NMDA receptor.


Behavioural Brain Research | 2016

Baclofen ameliorates spatial working memory impairments induced by chronic cerebral hypoperfusion via up-regulation of HCN2 expression in the PFC in rats

Pan Luo; Cheng Chen; Yun Lu; Tianli Fu; Qing Lu; Xulin Xu; Chang-jun Li; Zhi He; Lianjun Guo

Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH.


Pharmacology, Biochemistry and Behavior | 2015

Clonidine ameliorates cognitive impairment induced by chronic cerebral hypoperfusion via up-regulation of the GABABR1 and GAD67 in hippocampal CA1 in rats

Yun Lu; Chang-jun Li; Mei Zhou; Pan Luo; Pengcheng Huang; Jiahong Tan; Qing Lu; Xulin Xu; Zhi He; Lianjun Guo

Chronic cerebral hypoperfusion may cause cognitive impairment, but the underlying neurobiological mechanism is poorly understood. In this study, we investigated whether clonidine, an α2-adrenergic receptor agonist, could play neuroprotective role against chronic ischemic brain injury and the potential mechanism. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Three weeks later, rats were administrated with 0.05mg/kg clonidine (intraperitoneal injection, i.p.) for 7days. Cognitive function was evaluated by Morris water maze (MWM). Immunofluorescence and western blots were used to detect the protein levels. Our results showed that the cognitive function was partially impaired, and the expression of neuronal nuclei (NeuN), glutamic acid decarboxylase 67 (GAD67) and γ-aminobutyric acid-B receptor 1 (GABABR1) in hippocampal CA1 area was attenuated after 2VO, which were not observed in CA3 and dentate gyrus (DG). Administration of 0.05mg/kg clonidine (i.p.) for 7days could improve cognitive function and the expression of NeuN, GAD67 and GABABR1 in CA1, but did not affect the protein levels in CA3 and DG. These findings demonstrated that clonidine could ameliorate cognitive deficits and neuronal impairment induced by chronic cerebral hypoperfusion via up-regulation of GABABR1 and GAD67 in hippocampal CA1.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2015

Imbalance of HCN1 and HCN2 expression in hippocampal CA1 area impairs spatial learning and memory in rats with chronic morphine exposure

Mei Zhou; Pan Luo; Yun Lu; Chang-jun Li; Dian-shi Wang; Qing Lu; Xulin Xu; Zhi He; Lianjun Guo

The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a vital role in the neurological basis underlying nervous system diseases. However, the role of HCN channels in drug addiction is not fully understood. In the present study, we investigated the expression of HCN1 and HCN2 subunits in hippocampal CA1 and the potential molecular mechanisms underlying the modulation of HCN channels in rats with chronic morphine exposure with approaches of electrophysiology, water maze, and Western blotting. We found that chronic morphine exposure (5 mg/kg, sc, for 7 days) caused an inhibition of long-term potentiation (LTP) and impairment of spatial learning and memory, which is associated with a decrease in HCN1, and an increase in HCN2 on cell membrane of hippocampal CA1 area. Additional experiments showed that the imbalance of cell membrane HCN1 and HCN2 expression under chronic morphine exposure was related to an increase in expression of TPR containing Rab8b interacting protein (TRIP8b) (1a-4) and TRIP8b (1b-2), and phosphorylation of protein kinase A (PKA) and adaptor protein 2 μ2 (AP2 μ2). Our results demonstrate the novel information that drug addiction-induced impairment of learning and memory is involved in the imbalance of HCN1 and HCN2 subunits, which is mediated by activation of TRIP8b (1a-4), TRIP8b (1b-2), PKA and AP2 μ2.


Neuroscience | 2014

KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

Chang-jun Li; Pengcheng Huang; Qing Lu; Mei Zhou; Lianjun Guo; Xulin Xu

Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences.

Collaboration


Dive into the lin Xu's collaboration.

Top Co-Authors

Avatar

Lianjun Guo

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Qing Lu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chang-jun Li

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mei Zhou

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yun Lu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zhi He

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Pan Luo

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cai Li

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cheng Chen

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Pengcheng Huang

Huazhong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge