Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xun Cao.
2017 International Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Boxuan Li; wenwen zhang; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Xiyuan li; Yonghong Shang; Jing Wang; Jingchuan Zhang; Runze Wang; Yabin Jian; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
With the rapid development of Chinas space industry, digitization and intelligent is the tendency of the future. This report is present a foundation research about guidance system which based on the HSV color space. With the help of these research which will help to design the automatic navigation and parking system for the frock transport car and the infrared lamp homogeneity intelligent test equipment. The drive mode, steer mode as well as the navigation method was selected. In consideration of the practicability, it was determined to use the front-wheel-steering chassis. The steering mechanism was controlled by the stepping motors, and it is guided by Machine Vision. The optimization and calibration of the steering mechanism was made. A mathematical model was built and the objective functions was constructed for the steering mechanism. The extraction method of the steering line was studied and the motion controller was designed and optimized. The theory of HSV, RGB color space and analysis of the testing result will be discussed Using the function library OPENCV on the Linux system to fulfill the camera calibration. Based on the HSV color space to design the guidance algorithm.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Meijing Gao; Ming Yang; Ailing Tan; Jingyuan Wang; Zhen-Long Zu; Jie Xu; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
With optical micro-scanning technology, the spatial resolution of the thermal microscope imaging system can be increased without reducing the size of the detector unit or increasing the detector dimensions. Due to optical micro-scanning error, the four low-resolution images collected by micro-scanning thermal micro- scope imaging system are not standard down-sampled images. The reconstructed image quality is degraded by the direct image interpolation with error, which influences the performance of the system. Therefore, the technique to reduce the system micro-scanning error need to be studied. Based on micro-scanning technology and combined with new edge directed interpolation(NEDI) algorithm, an error correction technique for the micro-scanning instrument is proposed. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning error, improve the imaging effect of the system and improve the systems spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Fei Yu; Shuai Hou; Lin Ding; Chen Liu; Li Chao; Lin Zhe; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Yongdao Luo; Jiangtong Li; Honglin Dai; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR’s analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR’s result better than PLSR.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Zhu LingLing; Cao FuBin; Li Jie; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Xin Meng; Xiaolin Tian; Zhilong Jiang; Yan Kong; Cheng Liu; Shouyu Wang; Wei Yu; Fei Liu; Liang Xue; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Jieyu Lei; Shaokun Han; Wenze Xia; Liang Wang; Yu Zhai; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
Three-dimensional imaging is increasingly becoming important in a number of applications that observe and analyze real-world environments. Range sensors, such as flash imaging Lidar and Time-of-flight camera, which can deliver high accuracy range measurement images, but are limited by the low resolution. To overcome this limitation, this paper shows the benefit of multimodal sensor system, combining a low-resolution range sensor with a high-resolution optical sensor, in order to provide a high-resolution, low-noise range image of the scene. First, an extrinsic calibration algorithm is used to align the range map with optical image. Then, an image-guided algorithm is proposed to solve the super-resolution optimization problem. This algorithm using the Markov Random Field framework. It defines an energy function that combines a standard quadratic data term and a regularizing term with the weighting factors that relate optical image edges to range map edges. Experiments on synthetic and real data are provided and analyzed to validate this method. The result confirms that the quality of the estimated high-resolution range map is improved. This work can be extended for video super-resolution with the consideration of temporal coherence.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Qingmei Huang; Wei Li; Yang Lu; Defen Chen; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
The purpose of this work is to develop a method for the accurate reproduction of the spectral colors captured by digital camera. The spectral colors being the purest color in any hue, are difficult to reproduce without distortion on digital devices. In this paper, we attempt to achieve accurate hue reproduction of the spectral colors by focusing on two steps of color correction: the capture of the spectral colors and the color characterization of digital camera. Hence it determines the relationship among the spectral color wavelength, the RGB color space of the digital camera device and the CIEXYZ color space. This study also provides a basis for further studies related to the color spectral reproduction on digital devices. In this paper, methods such as wavelength calibration of the spectral colors and digital camera characterization were utilized. The spectrum was obtained through the grating spectroscopy system. A photo of a clear and reliable primary spectrum was taken by adjusting the relative parameters of the digital camera, from which the RGB values of color spectrum was extracted in 1040 equally-divided locations. Calculated using grating equation and measured by the spectrophotometer, two wavelength values were obtained from each location. The polynomial fitting method for the camera characterization was used to achieve color correction. After wavelength calibration, the maximum error between the two sets of wavelengths is 4.38nm. According to the polynomial fitting method, the average color difference of test samples is 3.76. This has satisfied the application needs of the spectral colors in digital devices such as display and transmission.
International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology | 2018
Li Lu; Wen Sheng; Wei Jiang; Feng Jiang; Guohai Situ; Liquan Dong; Xun Cao; Wolfgang Osten
The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.