Xupin Jiang
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xupin Jiang.
Cell Adhesion & Migration | 2015
Xupin Jiang; Jiaping Zhang; Yuesheng Huang
Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention.
PLOS ONE | 2013
Xupin Jiang; Dongxia Zhang; Miao Teng; Qiong Zhang; Jiaping Zhang; Yuesheng Huang
Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and phenotype, leading to cell proliferation, migration and differentiation during wound repair, whether CD9 regulates kerationcytes migration directly remains unclear. In this study, we showed that the expression of CD9 was downregulated in migrating keratinocytes during wound repair in vivo and in vitro. Recombinant adenovirus vector for CD9 silencing or overexpressing was constructed and used to infect HaCaT cells. Using cell scratch wound assay and cell migration assay, we have also demonstrated that downregulation of CD9 promoted keratinocyte migration in vitro, whereas CD9 overexpression inhibited cell migration. Moreover, CD9 inversely regulated the activity and expression of MMP-9 in keratinocytes, which was involved in CD9-regulated keratinocyte migration. Importantly, CD9 silencing-activated JNK signaling was accompanied by the upregulation of MMP-9 activity and expression. Coincidentally, we found that SP600125, a JNK pathway inhibitor, decreased the activity and expression of MMP-9 of CD9-silenced HaCaT cells. Thus, our results suggest that CD9 is downregulated in migrating keratinocytes in vivo and in vitro, and a low level of CD9 promotes keratinocyte migration in vitro, in which the regulation of MMP-9 through the JNK pathway plays an important role.
PLOS ONE | 2012
Miao Teng; Xupin Jiang; Qiong Zhang; Jiaping Zhang; Dongxia Zhang; Guangping Liang; Yuesheng Huang
Background Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. Methodology/Principal Findings In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule–depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. Conclusions/Significance This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.
Scientific Reports | 2015
Xiaowei Guo; Xupin Jiang; Xi Ren; Huanbo Sun; Dongxia Zhang; Qiong Zhang; Jiaping Zhang; Yuesheng Huang
The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing.
Scientific Reports | 2015
Xupin Jiang; Xiaowei Guo; Xue Xu; Miao Teng; Chong Huang; Dongxia Zhang; Qiong Zhang; Jiaping Zhang; Yuesheng Huang
Keratinocyte migration is an early event in the wound healing process. Although we previously found that CD9 downregulation is required for the keratinocyte migration during wound repair, the mechanism of how CD9 expression is regulated remains unclear. Here, we observed the effect of hypoxia (2% O2) on CD9 expression and keratinocyte migration. CD9 expression was downregulated and keratinocyte migration was increased under hypoxic conditions. In addition, CD9 overexpression reversed hypoxia-induced cell migration. We also found that hypoxia activated the p38/MAPK pathway. SB203580, a p38/MAPK inhibitor, increased CD9 expression and inhibited keratinocyte migration under hypoxia, while MKK6 (Glu) overexpression decreased CD9 expression and promoted hypoxic keratinocyte migration. Our results demonstrate that hypoxia regulates CD9 expression and CD9-mediated keratinocyte migration via the p38/MAPK pathway.
Molecules and Cells | 2013
Xue Xu; Qiong Zhang; Jiongyu Hu; Dongxia Zhang; Xupin Jiang; Jiezhi Jia; Jing-ci Zhu; Yuesheng Huang
Hypoxia-induced microtubule disruption and mitochondrial permeability transition (mPT) are crucial events leading to fatal cell damage and recent studies showed that microtubules (MTs) are involved in the modulation of mitochondrial function. Dynein light chain Tctex-type 1 (DYNLT1) is thought to be associated with MTs and mitochondria. Previously we demonstrated that DYNLT1 knockdown aggravates hypoxia-induced mitochondrial permeabilization, which indicates a role of DYNLT1 in hypoxic cytoprotection. But the underlying regulatory mechanism of DYNLT1 remains illusive. Here we aimed to investigate the phosphorylation alteration of DYNLT1 at serine 82 (S82) in hypoxia (1% O2). We therefore constructed recombinant adenoviruses to generate S82E and S82A mutants, used to transfect H9c2 and HeLa cell lines. Development of hypoxia-induced mPT (MMP examining, Cyt c release and mPT pore opening assay), hypoxic energy metabolism (cellular viability and ATP quantification), and stability of MTs were examined. Our results showed that phosph-S82 (S82-P) expression was increased in early hypoxia; S82E mutation (phosphomimic) aggravated mitochondrial damage, elevated the free tubulin in cytoplasm and decreased the cellular viability; S82A mutation (dephosphomimic) seemed to diminish the hypoxia-induced injury. These data suggest that DYNLT1 phosphorylation at S82 is involved in MTs and mitochondria regulation, and their interaction and cooperation contribute to the cellular hypoxic tolerance. Thus, we provide new insights into a DYNLT1 mechanism in stabilizing MTs and mitochondria, and propose a potential therapeutic target for hypoxia cytoprotective studies.
Pharmacology | 2012
Da-Li Tong; Dongxia Zhang; Fei Xiang; Miao Teng; Xupin Jiang; Jing-Ming Hou; Qiong Zhang; Yuesheng Huang
Background/Aims: Nicotinamide plays a protective role in hypoxia-induced cardiomyocyte dysfunction. However, the underlying molecular mechanisms remain poorly understood. The purpose of this study was to investigate these and the effect of nicotinamide pretreatment on hypoxic cardiomyocytes. Methods: Cultured rat cardiomyocytes were pretreated with nicotinamide, subjected to hypoxia for 6 h, and then cell necrosis and apoptosis were examined. The effects of nicotinamide pretreatment on hypoxia-induced reactive oxygen species (ROS) formation, antioxidant enzyme expression, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+) levels, adenosine triphosphate (ATP) production and mitochondrial membrane potential were tested to elucidate the underlying mechanisms. Results: Based on the findings that nicotinamide treatment decreased protein expression of receptor-interacting protein (RIP; a marker for cell necrosis) and cleaved caspase-3 (CC3; a marker for cell apoptosis) in normoxic cardiomyocytes, we found that it dramatically reduced hypoxia-induced necrosis and apoptosis in cardiomyocytes. The underlying mechanisms of these effects are associated with the fact that it increased protein expression of superoxide dismutase and catalase, increased intracellular levels of NAD+ and ATP concentration, decreased mitochondrial ROS generation and prevented the loss of mitochondrial membrane potential. Conclusion: All of these results indicate that nicotinamide pretreatment protects cardiomyocytes by improving mitochondrial stress. Our study provides a new clue for the utilization of nicotinamide in therapies for ischemic heart disease.
FEBS Letters | 2014
Xupin Jiang; Miao Teng; Xiaowei Guo; Dongxia Zhang; Qiong Zhang; Jiaping Zhang; Yuesheng Huang
Our previous research found that tetraspanin CD9 is downregulated in migrating epidermis during wound healing, and CD9 downregulation contributes to keratinocyte migration via matrix metalloproteinase‐9 (MMP‐9) activation. However, little is known about the mechanisms involved in CD9‐regulated keratinocyte migration and MMP‐9 activation. In this study, we revealed that the expressions of integrin subunits β5 and β6 were regulated by CD9. Furthermore, CD9 silencing triggered the switch from αvβ5 to αvβ6 integrin in HaCaT keratinocytes and CD9 overexpression reversed the switch. Importantly, integrin αvβ6 functional blocking antibody 10D5 significantly inhibited CD9 silencing‐induced keratinocyte migration and MMP‐9 activation, suggesting that the switch from αvβ5 to αvβ6 integrin plays a key role in CD9‐regulated cell migration and MMP‐9 activation in keratinocytes.
Scientific Reports | 2017
Di Tang; Tiantian Yan; Junhui Zhang; Xupin Jiang; Dongxia Zhang; Yuesheng Huang
Oxygen tension is an important micro-environmental factor that affects epidermal development and function. After injury, high oxygen consumption and vascular injury result in partial hypoxia. However, whether hypoxia benefits or hurts wound healing remains controversial. In this study, a tissue oxygen tension monitor was used to detect the spatial and temporal distribution of oxygen in burn wounds. In vitro, we demonstrate that hypoxia promoted the expression of integrin β1 and the migration of keratinocytes. Furthermore, hypoxia-induced migration was slowed by Notch1 ligands and a siRNA against ITGB1 (integrin β1). Our findings suggest that integrin β1 may be an oxygen-sensitive molecule that promotes keratinocyte migration during wound healing and that Notch1 signaling is involved in this process.
Medicine | 2016
Xupin Jiang; Hengshu Zhang; Miao Teng
AbstractPrimary studies in animal models and humans have suggested the therapeutic potential of autologous stem cell for treating chronic lower extremity ulcers. However, the results of pilot randomized controlled trials (RCTs) in humans have been inconsistent.A meta-analysis of RCTs was performed to evaluate the role of autologous stem cell-based therapy for lower extremity ulcers.Studies were identified during a systematic search of Medline, Embase, Cochranes library, and references cited in related reviews and studies.Studies were included if they were RCTs published in English, recruited patients with lower extremity ulcers who were assigned to either a group for the topical therapy with autologous stem cells, and reported data regarding the healing of the ulcers.Relative risks (RRs) for healing rate and standardized mean differences (SMDs) for the changes in the mean sizes of ulcers were evaluated with a random-effects model.Overall, autologous stem cell-based therapy was associated with better healing of lower extremity ulcers (12 comparisons, 290 patients, RR for partial healing = 3.07, 95% confidence interval [CI] = 1.14–8.24, P = 0.03; RR for complete healing = 2.26, 95% CI = 1.48–3.16, P < 0.001) with little heterogeneity (I2 = 0%). Moreover, autologous stem cell-based therapy was associated with a greater reduction in mean ulcer size (SMD = −0.63, 95% CI = −1.03 to −0.22, P = 0.002). Subgroup analyses indicated that stem cells from peripheral blood and bone marrow seemed to exert similar beneficial effects on the healing of ulcers. Stem cell therapy was not associated with any increased risks for adverse events.The optimized sources, amounts, and delivery methods of stem cell -based therapy for patients with chronic lower extremity ulcers need to be determined, and the long-term effects of stem cell-based therapy on clinical outcomes need further exploration.Autologous stem cell-based therapy is effective and safe for improving the healing of chronic lower extremity ulcers and large-scale RCTs are needed to confirm our findings.