Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuesheng Huang is active.

Publication


Featured researches published by Yuesheng Huang.


Scientific Reports | 2015

P38/MAPK contributes to endothelial barrier dysfunction via MAP4 phosphorylation-dependent microtubule disassembly in inflammation-induced acute lung injury

Lingfei Li; Jiongyu Hu; Ting He; Qiong Zhang; Xu Yang; Xiaodong Lan; Dongxia Zhang; Hao Mei; Bing Chen; Yuesheng Huang

Excessive activation of inflammation and the accompanying lung vascular endothelial barrier disruption are primary pathogenic features of acute lung injury (ALI). Microtubule-associated protein 4 (MAP4), a tubulin assembly-promoting protein, is important for maintaining the microtubule (MT) cytoskeleton and cell-cell junctional structures. However, both the involvement and exact mechanism of MAP4 in the development of endothelial barrier disruption in ALI remains unknown. In this study, lipopolysaccharide (LPS) and tumour necrosis factor-α (TNF-α) were applied to human pulmonary microvascular endothelial cells (HPMECs) to mimic the endothelial damage during inflammation in vitro. We demonstrated that the MAP4 (Ser696 and Ser787) phosphorylation increased concomitantly with the p38/MAPK pathway activation by the LPS and TNF-α stimulation of HPMECs, which induced MT disassembly followed by hyperpermeability. Moreover, the application of taxol, the overexpression of a MAP4 (Ala) mutant, or the application of the p38/MAPK inhibitor SB203580 inhibited the MT disruption and the intracellular junction dysfunction. In contrast, MKK6 (Glu), which constitutively activated p38/MAPK, resulted in microtubule depolymerisation and, subsequently, hyperpermeability. Our findings reveal a novel role of MAP4 in endothelial barrier dysfunction.


PLOS ONE | 2012

Myocardial Autophagy after Severe Burn in Rats

Rong Xiao; Miao Teng; Qiong Zhang; Xiaohua Shi; Yuesheng Huang

Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction.


Cell Adhesion & Migration | 2015

Tetraspanins in Cell Migration

Xupin Jiang; Jiaping Zhang; Yuesheng Huang

Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention.


PLOS ONE | 2013

Downregulation of CD9 in keratinocyte contributes to cell migration via upregulation of matrix metalloproteinase-9.

Xupin Jiang; Dongxia Zhang; Miao Teng; Qiong Zhang; Jiaping Zhang; Yuesheng Huang

Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and phenotype, leading to cell proliferation, migration and differentiation during wound repair, whether CD9 regulates kerationcytes migration directly remains unclear. In this study, we showed that the expression of CD9 was downregulated in migrating keratinocytes during wound repair in vivo and in vitro. Recombinant adenovirus vector for CD9 silencing or overexpressing was constructed and used to infect HaCaT cells. Using cell scratch wound assay and cell migration assay, we have also demonstrated that downregulation of CD9 promoted keratinocyte migration in vitro, whereas CD9 overexpression inhibited cell migration. Moreover, CD9 inversely regulated the activity and expression of MMP-9 in keratinocytes, which was involved in CD9-regulated keratinocyte migration. Importantly, CD9 silencing-activated JNK signaling was accompanied by the upregulation of MMP-9 activity and expression. Coincidentally, we found that SP600125, a JNK pathway inhibitor, decreased the activity and expression of MMP-9 of CD9-silenced HaCaT cells. Thus, our results suggest that CD9 is downregulated in migrating keratinocytes in vivo and in vitro, and a low level of CD9 promotes keratinocyte migration in vitro, in which the regulation of MMP-9 through the JNK pathway plays an important role.


PLOS ONE | 2012

Microtubular Stability Affects pVHL-Mediated Regulation of HIF-1alpha via the p38/MAPK Pathway in Hypoxic Cardiomyocytes

Miao Teng; Xupin Jiang; Qiong Zhang; Jiaping Zhang; Dongxia Zhang; Guangping Liang; Yuesheng Huang

Background Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. Methodology/Principal Findings In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule–depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. Conclusions/Significance This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.


Scientific Reports | 2015

The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning

Xiaowei Guo; Xupin Jiang; Xi Ren; Huanbo Sun; Dongxia Zhang; Qiong Zhang; Jiaping Zhang; Yuesheng Huang

The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing.


Science Signaling | 2015

A large-scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum

Runchi Gao; Siwei Zhao; Xupin Jiang; Yaohui Sun; Sanjun Zhao; Jing Gao; Jane Borleis; Stacey Willard; Ming Tang; Huaqing Cai; Yoichiro Kamimura; Yuesheng Huang; Jianxin Jiang; Zunxi Huang; Alex Mogilner; Tingrui Pan; Peter N. Devreotes; Min Zhao

A screen in Dictyostelium reveals that mTORC2 signaling participates in electrotaxis, as well as chemotaxis. Moving to that electric feel Cell movement can be guided by chemical gradients (chemotaxis) or by electrical fields (electrotaxis), both of which contribute to wound healing. Whereas the mechanisms that control chemotaxis are well characterized, those controlling electrotaxis are not. To identify genes required for electrotaxis in the slime mold Dictyostelium discoideum, a model organism that has been used in chemotaxis studies, Gao et al. developed a high-throughput screening method of analyzing electrotaxis in genetically modified Dictyostelium strains. Without components of the TORC2 pathway, a pathway involved in chemotaxis, these single-celled organisms had defective electrotaxis. This study sets the stage for identifying signaling pathways that are unique to each type of movement and those that are shared. Directional cell migration in an electric field, a phenomenon called galvanotaxis or electrotaxis, occurs in many types of cells, and may play an important role in wound healing and development. Small extracellular electric fields can guide the migration of amoeboid cells, and we established a large-scale screening approach to search for mutants with electrotaxis phenotypes from a collection of 563 Dictyostelium discoideum strains with morphological defects. We identified 28 strains that were defective in electrotaxis and 10 strains with a slightly higher directional response. Using plasmid rescue followed by gene disruption, we identified some of the mutated genes, including some previously implicated in chemotaxis. Among these, we studied PiaA, which encodes a critical component of TORC2, a kinase protein complex that transduces changes in motility by activating the kinase PKB (also known as Akt). Furthermore, we found that electrotaxis was decreased in mutants lacking gefA, rasC, rip3, lst8, or pkbR1, genes that encode other components of the TORC2-PKB pathway. Thus, we have developed a high-throughput screening technique that will be a useful tool to elucidate the molecular mechanisms of electrotaxis.


Clinical Science | 2015

Pigment epithelium-derived factor regulates microvascular permeability through adipose triglyceride lipase in sepsis.

Ting He; Jiongyu Hu; Guangning Yan; Lingfei Li; Dongxia Zhang; Qiong Zhang; Bing Chen; Yuesheng Huang

The integrity of the vascular barrier, which is essential to blood vessel homoeostasis, can be disrupted by a variety of soluble permeability factors during sepsis. Pigment epithelium-derived factor (PEDF), a potent endogenous anti-angiogenic molecule, is significantly increased in sepsis, but its role in endothelial dysfunction has not been defined. To assess the role of PEDF in the vasculature, we evaluated the effects of exogenous PEDF in vivo using a mouse model of cecal ligation and puncture (CLP)-induced sepsis and in vitro using human dermal microvascular endothelial cells (HDMECs). In addition, PEDF was inhibited using a PEDF-monoclonal antibody (PEDF-mAb) or recombinant lentivirus vectors targeting PEDF receptors, including adipose triglyceride lipase (ATGL) and laminin receptor (LR). Our results showed that exogenous PEDF induced vascular hyperpermeability, as measured by extravasation of Evans Blue (EB), dextran and microspheres in the skin, blood, trachea and cremaster muscle, both in a normal state and under conditions of sepsis. In control and LR-shRNA-treated HDMECs, PEDF alone or in combination with inflammatory mediators resulted in activation of RhoA, which was accompanied by actin rearrangement and disassembly of intercellular junctions, impairing endothelial barrier function. But in ATGL-shRNA-treated HDMECs, PEDF failed to induce the aforementioned alterations, suggesting that PEDF-induced hyperpermeability was mediated through the ATGL receptor. These results reveal a novel role for PEDF as a potential vasoactive substance in septic vascular hyperpermeability. Furthermore, our results suggest that PEDF and ATGL may serve as therapeutic targets for managing vascular hyperpermeability in sepsis.


Journal of Proteomics | 2012

Identification of mitochondria translation elongation factor Tu as a contributor to oxidative damage of postburn myocardium

Dongxia Zhang; Hong Yan; Jiongyu Hu; Jiaping Zhang; Miao Teng; Da-Li Tong; Fei Xiang; Qiong Zhang; Ya-dong Fang; Guang-ping Liang; Yuesheng Huang

Mitochondrial damage plays an important role in mediating postburn cardiac injury. To elucidate the pivotal mitochondrial proteins and pathways underlying postburn cardiac injury, mitochondria were purified from control and postburn rat hearts. 2-dimensional gel electrophoresis (2-DE) and HPLC-chip-MS/MS analyses revealed 9 differentially expressed proteins, 3 of which were further validated by Western blotting. The differential expression of these mitochondrial proteins was accompanied by increased levels of oxidative cardiac damage and decreased levels of cardiac output. One of the differentially expressed proteins, mitochondria translation elongation factor Tu (EF-Tumt), was hypothesized to contribute crucially to postburn oxidative cardiac damage. The small interfering RNA (siRNA)-mediated downregulation of EF-Tumt in cultured rat cardiomyocytes increased reactive oxygen species (ROS) generation and protein carbonyl levels, and led to cell damage. The potential pathway of this process was associated with respiratory chain complex I deficiency. Together, these results demonstrate the mitochondrial responses to severe burn, and indicate a pathway by which decreased EF-Tumt expression mediates oxidative damage in postburn myocardium.


Scientific Reports | 2015

Hypoxia regulates CD9-mediated keratinocyte migration via the P38/MAPK pathway

Xupin Jiang; Xiaowei Guo; Xue Xu; Miao Teng; Chong Huang; Dongxia Zhang; Qiong Zhang; Jiaping Zhang; Yuesheng Huang

Keratinocyte migration is an early event in the wound healing process. Although we previously found that CD9 downregulation is required for the keratinocyte migration during wound repair, the mechanism of how CD9 expression is regulated remains unclear. Here, we observed the effect of hypoxia (2% O2) on CD9 expression and keratinocyte migration. CD9 expression was downregulated and keratinocyte migration was increased under hypoxic conditions. In addition, CD9 overexpression reversed hypoxia-induced cell migration. We also found that hypoxia activated the p38/MAPK pathway. SB203580, a p38/MAPK inhibitor, increased CD9 expression and inhibited keratinocyte migration under hypoxia, while MKK6 (Glu) overexpression decreased CD9 expression and promoted hypoxic keratinocyte migration. Our results demonstrate that hypoxia regulates CD9 expression and CD9-mediated keratinocyte migration via the p38/MAPK pathway.

Collaboration


Dive into the Yuesheng Huang's collaboration.

Top Co-Authors

Avatar

Dongxia Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qiong Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xupin Jiang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiaping Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiongyu Hu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiezhi Jia

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Junhui Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Lingfei Li

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Miao Teng

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Tiantian Yan

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge