Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Ann Chen is active.

Publication


Featured researches published by Y. Ann Chen.


PLOS ONE | 2010

Ack1 Mediated AKT/PKB Tyrosine 176 Phosphorylation Regulates Its Activation

Kiran Mahajan; Domenico Coppola; Sridevi Challa; Bin Fang; Y. Ann Chen; Weiwei Zhu; Alexis S. Lopez; John M. Koomen; Robert W. Engelman; Charlene Rivera; Rebecca S. Muraoka-Cook; Jin Q. Cheng; Ernst Schönbrunn; Said M. Sebti; H. Shelton Earp; Nupam P. Mahajan

The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have uncovered that growth factors binding to RTKs lead to activation of a non-receptor tyrosine kinase, Ack1 (also known as ACK or TNK2), which directly phosphorylates AKT at an evolutionarily conserved tyrosine 176 in the kinase domain. Tyr176-phosphorylated AKT localizes to the plasma membrane and promotes Thr308/Ser473-phosphorylation leading to AKT activation. Mice expressing activated Ack1 specifically in the prostate exhibit AKT Tyr176-phosphorylation and develop murine prostatic intraepithelial neoplasia (mPINs). Further, expression levels of Tyr176-phosphorylated-AKT and Tyr284-phosphorylated-Ack1 were positively correlated with the severity of disease progression, and inversely correlated with the survival of breast cancer patients. Thus, RTK/Ack1/AKT pathway provides a novel target for drug discovery.


Cancer Research | 2011

LIN28B Polymorphisms Influence Susceptibility to Epithelial Ovarian Cancer

Jennifer Permuth-Wey; Donghwa Kim; Ya Yu Tsai; Hui-Yi Lin; Y. Ann Chen; Jill S. Barnholtz-Sloan; Michael J. Birrer; Gregory C. Bloom; Stephen J. Chanock; Zhihua Chen; Daniel W. Cramer; Julie M. Cunningham; Getachew A. Dagne; Judith Ebbert-Syfrett; David Fenstermacher; Brooke L. Fridley; Montserrat Garcia-Closas; Simon A. Gayther; William Ge; Aleksandra Gentry-Maharaj; Jesus Gonzalez-Bosquet; Ellen L. Goode; Edwin S. Iversen; Heather Jim; William Kong; John R. McLaughlin; Usha Menon; Alvaro N.A. Monteiro; Steven A. Narod; Paul Pharoah

Defective microRNA (miRNA) biogenesis contributes to the development and progression of epithelial ovarian cancer (EOC). In this study, we examined the hypothesis that single nucleotide polymorphisms (SNP) in miRNA biogenesis genes may influence EOC risk. In an initial investigation, 318 SNPs in 18 genes were evaluated among 1,815 EOC cases and 1,900 controls, followed up by a replicative joint meta-analysis of data from an additional 2,172 cases and 3,052 controls. Of 23 SNPs from 9 genes associated with risk (empirical P < 0.05) in the initial investigation, the meta-analysis replicated 6 SNPs from the DROSHA, FMR1, LIN28, and LIN28B genes, including rs12194974 (G>A), an SNP in a putative transcription factor binding site in the LIN28B promoter region (summary OR = 0.90, 95% CI: 0.82-0.98; P = 0.015) which has been recently implicated in age of menarche and other phenotypes. Consistent with reports that LIN28B overexpression in EOC contributes to tumorigenesis by repressing tumor suppressor let-7 expression, we provide data from luciferase reporter assays and quantitative RT-PCR to suggest that the inverse association among rs12194974 A allele carriers may be because of reduced LIN28B expression. Our findings suggest that variants in LIN28B and possibly other miRNA biogenesis genes may influence EOC susceptibility.


Journal of Neuro-oncology | 2011

Cancer susceptibility variants and the risk of adult glioma in a US case–control study

Kathleen M. Egan; Reid C. Thompson; Louis B. Nabors; Jeffrey J. Olson; Daniel J. Brat; Renato V. LaRocca; Steven Brem; Paul L. Moots; Melissa H. Madden; James E. Browning; Y. Ann Chen

Malignant gliomas are the most common and deadly brain tumors. Although their etiology remains elusive, recent studies have narrowed the search for genetic loci that influence risk. We examined variants implicated in recent cancer genome-wide association studies (GWAS) for associations with glioma risk in a US case–control study. Cases were identified from neurosurgical and neuro-oncology clinics at major academic centers in the Southeastern US. Controls were identified from the community or were friends or other associates of cases. We examined a total of 191 susceptibility variants in genes identified in published cancer GWAS including glioma. A total of 639 glioma cases and 649 controls, all Caucasian, were included in analysis. Cases were enrolled a median of 1 month following diagnosis. Among glioma GWAS-identified variants, we detected associations in CDKN2B, RTEL1, TERT and PHLDB1, whereas we did not find overall associations for CCDC26. Results showed clear heterogeneity according to histologic subtypes of glioma, with TERT and RTEL variants a feature of astrocytic tumors and glioblastoma (GBM), CCDC26 and PHLDB1 variants a feature of astrocytic and oligodendroglial tumors, and CDKN2B variants most prominent in GBM. No examined variant in other cancer GWAS was found to be related to risk after adjustment for multiple comparisons. These results suggest that GWAS-identified SNPs in glioma mark different molecular etiologies in glioma. Stratification by broad histological subgroups may shed light on molecular mechanisms and assist in the discovery of novel loci in future studies of genetic susceptibility variants in glioma.


The Prostate | 2010

Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity.

Kiran Mahajan; Sridevi Challa; Domenico Coppola; Harshani R. Lawrence; Yunting Luo; Harsukh Gevariya; Weiwei Zhu; Y. Ann Chen; Nicholas J. Lawrence; Nupam P. Mahajan

Androgen receptor (AR) plays a critical role in the progression of both androgen‐dependent and androgen‐independent prostate cancer (AIPC). Ligand‐independent activation of AR in AIPC or castration resistant prostate cancer (CRPC) is often associated with poor prognosis. Recently, tyrosine kinase Ack1 has been shown to regulate AR activity by phosphorylating it at tyrosine 267 and this event was shown to be critical for AIPC growth. However, whether a small molecule inhibitor that can mitigate Ack1 activation is sufficient to abrogate AR activity on AR regulated promoters in androgen‐depleted environment is not known.


Clinical Cancer Research | 2014

Tyrosine Phosphoproteomics Identifies Both Codrivers and Cotargeting Strategies for T790M-Related EGFR-TKI Resistance in Non–Small Cell Lung Cancer

Takeshi Yoshida; Guolin Zhang; Matthew A. Smith; Alex S. Lopez; Yun Bai; Jiannong Li; Bin Fang; John M. Koomen; Bhupendra Rawal; Kate Fisher; Y. Ann Chen; Michiko Kitano; Yume Morita; Haruka Yamaguchi; Kiyoko Shibata; Takafumi Okabe; Isamu Okamoto; Kazuhiko Nakagawa; Eric B. Haura

Purpose: Irreversible EGFR-tyrosine kinase inhibitors (TKI) are thought to be one strategy to overcome EGFR-TKI resistance induced by T790M gatekeeper mutations in non–small cell lung cancer (NSCLC), yet they display limited clinical efficacy. We hypothesized that additional resistance mechanisms that cooperate with T790M could be identified by profiling tyrosine phosphorylation in NSCLC cells with acquired resistance to reversible EGFR-TKI and harboring T790M. Experimental Design: We profiled PC9 cells with TKI-sensitive EGFR mutation and paired EGFR-TKI–resistant PC9GR (gefitinib-resistant) cells with T790M using immunoaffinity purification of tyrosine-phosphorylated peptides and mass spectrometry–based identification/quantification. Profiles of erlotinib perturbations were examined. Results: We observed a large fraction of the tyrosine phosphoproteome was more abundant in PC9- and PC9GR-erlotinib–treated cells, including phosphopeptides corresponding to MET, IGF, and AXL signaling. Activation of these receptor tyrosine kinases by growth factors could protect PC9GR cells against the irreversible EGFR-TKI afatinib. We identified a Src family kinase (SFK) network as EGFR-independent and confirmed that neither erlotinib nor afatinib affected Src phosphorylation at the activation site. The SFK inhibitor dasatinib plus afatinib abolished Src phosphorylation and completely suppressed downstream phosphorylated Akt and Erk. Dasatinib further enhanced antitumor activity of afatinib or T790M-selective EGFR-TKI (WZ4006) in proliferation and apoptosis assays in multiple NSCLC cell lines with T790M-mediated resistance. This translated into tumor regression in PC9GR xenograft studies with combined afatinib and dasatinib. Conclusions: Our results identified both codrivers of resistance along with T790M and support further studies of irreversible or T790M-selective EGFR inhibitors combined with dasatinib in patients with NSCLC with acquired T790M. Clin Cancer Res; 20(15); 4059–74. ©2014 AACR.


Journal of Biological Chemistry | 2012

Ack1-mediated Androgen Receptor Phosphorylation Modulates Radiation Resistance in Castration-resistant Prostate Cancer

Kiran Mahajan; Domenico Coppola; Bhupendra Rawal; Y. Ann Chen; Harshani R. Lawrence; Robert W. Engelman; Nicholas J. Lawrence; Nupam P. Mahajan

Background: The molecular mechanisms of acquisition of radioresistance in CRPC are not fully understood. Results: Ack1/AR signaling modulates ATM expression to promote radioresistance. Conclusion: Ack1/AR signaling plays a critical role in acquisition of radioresistance in CRPC by modulating the DNA damage response pathways. Significance: Ack1/AR signaling represents a new paradigm of radioresistance in CRPC that can be targeted with AIM-100. Androgen deprivation therapy has been the standard of care in prostate cancer due to its effectiveness in initial stages. However, the disease recurs, and this recurrent cancer is referred to as castration-resistant prostate cancer (CRPC). Radiotherapy is the treatment of choice; however, in addition to androgen independence, CRPC is often resistant to radiotherapy, making radioresistant CRPC an incurable disease. The molecular mechanisms by which CRPC cells acquire radioresistance are unclear. Androgen receptor (AR)-tyrosine 267 phosphorylation by Ack1 tyrosine kinase (also known as TNK2) has emerged as an important mechanism of CRPC growth. Here, we demonstrate that pTyr267-AR is recruited to the ATM (ataxia telangiectasia mutated) enhancer in an Ack1-dependent manner to up-regulate ATM expression. Mice engineered to express activated Ack1 exhibited a significant increase in pTyr267-AR and ATM levels. Furthermore, primary human CRPCs with up-regulated activated Ack1 and pTyr267-AR also exhibited significant increase in ATM expression. The Ack1 inhibitor AIM-100 not only inhibited Ack1 activity but also was able to suppress AR Tyr267 phosphorylation and its recruitment to the ATM enhancer. Notably, AIM-100 suppressed Ack1 mediated ATM expression and mitigated the growth of radioresistant CRPC tumors. Thus, our study uncovers a previously unknown mechanism of radioresistance in CRPC, which can be therapeutically reversed by a new synergistic approach that includes radiotherapy along with the suppression of Ack1/AR/ATM signaling by the Ack1 inhibitor, AIM-100.


Oncotarget | 2015

A functional variant in HOXA11-AS, a novel long non-coding RNA, inhibits the oncogenic phenotype of epithelial ovarian cancer

Edward J. Richards; Jennifer Permuth-Wey; Yajuan Li; Y. Ann Chen; Domenico Coppola; Brett M. Reid; Hui-Yi Lin; Jamie K. Teer; Andrew Berchuck; Michael J. Birrer; Kate Lawrenson; Alvaro N.A. Monteiro; Joellen M. Schildkraut; Ellen L. Goode; Simon A. Gayther; Thomas A. Sellers; Jin Q. Cheng

The homeobox A (HOXA) region of protein-coding genes impacts female reproductive system embryogenesis and ovarian carcinogenesis. The 5-prime end of HOXA includes three long non-coding RNAs (lncRNAs) (HOXA10-AS, HOXA11-AS, and HOTTIP) that are underexplored in epithelial ovarian cancer (EOC). We evaluated whether common genetic variants in these lncRNAs are associated with EOC risk and/or have functional roles in EOC development. Using genome-wide association study data from 1,201 serous EOC cases and 2,009 controls, an exonic variant within HOXA11-AS, rs17427875 (A>T), was marginally associated with reduced serous EOC risk (OR = 0.88 (95% CI: 0.78-1.01, p = 0.06). Functional studies of ectopic expression of HOXA11-AS minor allele T in EOC cells showed decreased survival, proliferation, migration, and invasion compared to common allele A expression. Additionally, stable expression of HOXA11-AS minor allele T reduced primary tumor growth in mouse xenograft models to a greater extent than common allele A. Furthermore, HOXA11-AS expression levels were significantly lower in human EOC tumors than normal ovarian tissues (p < 0.05), suggesting that HOXA11-AS has a tumor suppressor function in EOC which may be enhanced by the T allele. These findings demonstrate for the first time a role for HOXA11-AS in EOC with effects that could be modified by germline variants.


Cancer Epidemiology, Biomarkers & Prevention | 2011

Inherited Variants in Mitochondrial Biogenesis Genes May Influence Epithelial Ovarian Cancer Risk

Jennifer Permuth-Wey; Y. Ann Chen; Ya Yu Tsai; Zhihua Chen; Xiaotao Qu; Johnathan M. Lancaster; Heather G. Stockwell; Getachew A. Dagne; Edwin S. Iversen; Harvey A. Risch; Jill S. Barnholtz-Sloan; Julie M. Cunningham; Robert A. Vierkant; Brooke L. Fridley; Rebecca Sutphen; John R. McLaughlin; Steven A. Narod; Ellen L. Goode; Joellen M. Schildkraut; David Fenstermacher; Catherine M. Phelan; Thomas A. Sellers

Background: Mitochondria contribute to oxidative stress, a phenomenon implicated in ovarian carcinogenesis. We hypothesized that inherited variants in mitochondrial-related genes influence epithelial ovarian cancer (EOC) susceptibility. Methods: Through a multicenter study of 1,815 Caucasian EOC cases and 1,900 controls, we investigated associations between EOC risk and 128 single nucleotide polymorphisms (SNPs) from 22 genes/regions within the mitochondrial genome (mtDNA) and 2,839 nuclear-encoded SNPs localized to 138 genes involved in mitochondrial biogenesis (BIO, n = 35), steroid hormone metabolism (HOR, n = 13), and oxidative phosphorylation (OXP, n = 90) pathways. Unconditional logistic regression was used to estimate OR and 95% CI between genotype and case status. Overall significance of each gene and pathway was evaluated by using Fishers method to combine SNP-level evidence. At the SNP level, we investigated whether lifetime ovulation, hormone replacement therapy (HRT), and cigarette smoking were confounders or modifiers of associations. Results: Interindividual variation involving BIO was most strongly associated with EOC risk (empirical P = 0.050), especially for NRF1, MTERF, PPARGC1A, ESRRA, and CAMK2D. Several SNP-level associations strengthened after adjustment for nongenetic factors, particularly for MTERF. Statistical interactions with cigarette smoking and HRT use were observed with MTERF and CAMK2D SNPs, respectively. Overall variation within mtDNA, HOR, and OXP was not statistically significant (empirical P > 0.10). Conclusion: We provide novel evidence to suggest that variants in mitochondrial biogenesis genes may influence EOC susceptibility. Impact: A deeper understanding of the complex mechanisms implicated in mitochondrial biogenesis and oxidative stress may aid in developing strategies to reduce morbidity and mortality from EOC. Cancer Epidemiol Biomarkers Prev; 20(6); 1131–45. ©2011 AACR.


American Journal of Pathology | 2012

Ack1 Tyrosine Kinase Activation Correlates with Pancreatic Cancer Progression

Kiran Mahajan; Domenico Coppola; Y. Ann Chen; Weiwei Zhu; Harshani R. Lawrence; Nicholas J. Lawrence; Nupam P. Mahajan

Pancreatic cancer is a significant cause of cancer mortality worldwide as the disease has advanced significantly in patients before symptoms are evident. The signal transduction pathways that promote this rapid progression are not well understood. Ack1 or TNK2, an ubiquitously expressed oncogenic non-receptor tyrosine kinase, integrates signals from ligand-activated receptor tyrosine kinases to modulate intracellular signaling cascades. In the present study, we investigated the Ack1 activation profile in a pancreatic cancer tumor microarray, and observed that expression levels of activated Ack1 and pTyr284-Ack1 positively correlated with the severity of disease progression and inversely correlated with the survival of patients with pancreatic cancer. To explore the mechanisms by which Ack1 promotes tumor progression, we investigated the role of AKT/PKB, an oncogene and Ack1-interacting protein. Ack1 activates AKT directly in pancreatic and other cancer cell lines by phosphorylating AKT at Tyr176 to promote cell survival. In addition, the Ack1 inhibitor AIM-100 not only inhibited Ack1 activation but also suppressed AKT tyrosine phosphorylation, leading to cell cycle arrest in the G1 phase. This effect resulted in a significant decrease in the proliferation of pancreatic cancer cells and induction of apoptosis. Collectively, our data indicate that activated Ack1 could be a prognostic marker for ascertaining early or advanced pancreatic cancer. Thus, Ack1 inhibitors hold promise for therapeutic intervention to inhibit pancreatic tumor growth.


PLOS ONE | 2015

A Genome-Wide Investigation of MicroRNA Expression Identifies Biologically-Meaningful MicroRNAs That Distinguish between High-Risk and Low-Risk Intraductal Papillary Mucinous Neoplasms of the Pancreas

Jennifer Permuth-Wey; Y. Ann Chen; Kate Fisher; Susan McCarthy; Xiaotao Qu; Mark C. Lloyd; Agnieszka Kasprzak; Michelle Fournier; Vonetta L. Williams; Kavita M. Ghia; Sean J. Yoder; Laura S. Hall; Christina Georgeades; Funmilayo Olaoye; Kazim Husain; Gregory M. Springett; Dung-Tsa Chen; Timothy J. Yeatman; Barbara A. Centeno; Jason B. Klapman; Domenico Coppola; Mokenge P. Malafa

Background Intraductal papillary mucinous neoplasms (IPMNs) are pancreatic ductal adenocarcinoma (PDAC) precursors. Differentiating between high-risk IPMNs that warrant surgical resection and low-risk IPMNs that can be monitored is a significant clinical problem, and we sought to discover a panel of mi(cro)RNAs that accurately classify IPMN risk status. Methodology/Principal Findings In a discovery phase, genome-wide miRNA expression profiling was performed on 28 surgically-resected, pathologically-confirmed IPMNs (19 high-risk, 9 low-risk) using Taqman MicroRNA Arrays. A validation phase was performed in 21 independent IPMNs (13 high-risk, 8 low-risk). We also explored associations between miRNA expression level and various clinical and pathological factors and examined genes and pathways regulated by the identified miRNAs by integrating data from bioinformatic analyses and microarray analysis of miRNA gene targets. Six miRNAs (miR-100, miR-99b, miR-99a, miR-342-3p, miR-126, miR-130a) were down-regulated in high-risk versus low-risk IPMNs and distinguished between groups (P<10−3, area underneath the curve (AUC) = 87%). The same trend was observed in the validation phase (AUC = 74%). Low miR-99b expression was associated with main pancreatic duct involvement (P = 0.021), and serum albumin levels were positively correlated with miR-99a (r = 0.52, P = 0.004) and miR-100 expression (r = 0.49, P = 0.008). Literature, validated miRNA:target gene interactions, and pathway enrichment analysis supported the candidate miRNAs as tumor suppressors and regulators of PDAC development. Microarray analysis revealed that oncogenic targets of miR-130a (ATG2B, MEOX2), miR-342-3p (DNMT1), and miR-126 (IRS-1) were up-regulated in high- versus low-risk IPMNs (P<0.10). Conclusions This pilot study highlights miRNAs that may aid in preoperative risk stratification of IPMNs and provides novel insights into miRNA-mediated progression to pancreatic malignancy. The miRNAs identified here and in other recent investigations warrant evaluation in biofluids in a well-powered prospective cohort of individuals newly-diagnosed with IPMNs and other pancreatic cysts and those at increased genetic risk for these lesions.

Collaboration


Dive into the Y. Ann Chen's collaboration.

Top Co-Authors

Avatar

Zhihua Chen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Sellers

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Koomen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Fang

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge