Y. Peter Di
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Y. Peter Di.
Nature Communications | 2015
Donald G. Phinney; Michelangelo Di Giuseppe; Joel Njah; Ernest Sala; Sruti Shiva; Claudette M. St. Croix; Donna B. Stolz; Simon C. Watkins; Y. Peter Di; George D. Leikauf; Jay K. Kolls; David W. H. Riches; Giuseppe Deiuliis; Naftali Kaminski; Siddaraju V. Boregowda; David H. McKenna; Luis A. Ortiz
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.
American Journal of Pathology | 2011
Fabienne Gally; Y. Peter Di; Sean Smith; Maisha N. Minor; Yang Liu; Donna L. Bratton; S. Courtney Frasch; Nicole Michels; Stephanie R. Case; Hong Wei Chu
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is highly expressed in normal airways, but is dramatically decreased in allergic and cigarette smoke exposure settings. We have previously demonstrated SPLUNC1 in vitro antibacterial property against Mycoplasma pneumoniae (Mp). However, its in vivo biological functions remain unclear. The objectives of this study were to determine the in vivo functions of SPLUNC1 following bacterial (eg, Mp) infection, and to examine the underlying mechanisms. We generated SPLUNC1-deficient mice and utilized transgenic mice overexpressing human SPLUNC1 exclusively within the airway epithelium. These mice were infected with Mp and, twenty-four hours post infection, their host defense responses were compared to littermate controls. Mp levels and inflammatory cells increased in the lungs of SPLUNC1(-/-) mice as compared to wild type controls. SPLUNC1 deficiency was shown to contribute to impaired neutrophil activation. In contrast, mice overexpressing hSPLUNC1 exclusively in airway epithelial cells demonstrated lower Mp levels. Furthermore, neutrophil elastase activity was significantly increased in mice overexpressing hSPLUNC1. Lastly, we demonstrated that SPLUNC1 enhanced Mp-induced human neutrophil elastase (HNE) activity, and HNE directly inhibited the growth of Mp. Our findings demonstrate a critical in vivo role of SPLUNC1 in host defense against bacterial infection, and likely provide a novel therapeutic approach to restore impaired lung innate immune responses to bacteria in patients with chronic lung diseases.
American Journal of Pathology | 2013
Yang Liu; Jennifer A. Bartlett; Marissa E. Di; Jennifer M. Bomberger; Yvonne R. Chan; Lokesh Gakhar; Rama K. Mallampalli; Paul B. McCray; Y. Peter Di
Epithelial host defense proteins comprise a critical component of the pulmonary innate immune response to infection. The short palate, lung, nasal epithelium clone (PLUNC) 1 (SPLUNC1) protein is a member of the bactericidal/permeability-increasing (BPI) fold-containing (BPIF) protein family, sharing structural similarities with BPI-like proteins. SPLUNC1 is a 25 kDa secretory protein that is expressed in nasal, oropharyngeal, and lung epithelia, and has been implicated in airway host defense against Pseudomonas aeruginosa and other organisms. SPLUNC1 is reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to assess the importance of SPLUNC1 surfactant activity in airway epithelial secretions and to explore its biological relevance in the context of a bacterial infection model. Using cultured airway epithelia, we confirmed that SPLUNC1 is critically important for maintenance of low surface tension in airway fluids. Furthermore, we demonstrated that recombinant SPLUNC1 (rSPLUNC1) significantly inhibited Klebsiella pneumoniae biofilm formation on airway epithelia. We subsequently found that Splunc1(-/-) mice were significantly more susceptible to infection with K. pneumoniae, confirming the likely in vivo relevance of this anti-biofilm effect. Our data indicate that SPLUNC1 is a crucial component of mucosal innate immune defense against pulmonary infection by a relevant airway pathogen, and provide further support for the novel hypothesis that SPLUNC1 protein prevents bacterial biofilm formation through its ability to modulate surface tension of airway fluids.
Journal of Biological Chemistry | 2012
Y. Peter Di; Jinming Zhao; Richart W. Harper
Background: Cigarette smokers have increased mucus secretion and MUC5AC gene expression. Results: Cigarette smoke increases Sp1 protein expression and activates Sp1 binding to a smoke-responsive promoter region of the MUC5AC. Conclusion: Sp1 is the key regulator of cigarette smoke-induced MUC5AC mRNA transcription in lung epithelial cells. Significance: Sp1 may be a putative target to treat mucus hypersecretion in COPD patients. Cigarette smoke (CS) exposure is associated with increased mucus production and chronic obstructive pulmonary disease (COPD). MUC5AC is the major inducible mucus gene in the airway. The purpose of this investigation was to elucidate the mechanisms of CS-induced activation of MUC5AC gene transcription. We observed that the region −3724/−3224 of the MUC5AC promoter is critical for CS-induced gene transcriptional activity and that this region contains two Sp1 binding sites. Using a lung-relevant model, we observed that CS increased nuclear Sp1 protein expression. Consequently, CS exposure resulted in enhanced Sp1-DNA binding activity and Sp1 trans-activation. Co-transfection of the MUC5AC-luc reporter with Sp1 expression plasmids resulted in significantly increased MUC5AC-luc activity, whereas co-treatment with mithramycin A, a Sp1 inhibitor, abolished CS-induced MUC5AC promoter activity. Using mobility shift assay and chromatin immunoprecipitation, we demonstrated that two Sp1 binding sites in the MUC5AC promoter are functional and responsive to CS exposure. A mutation of either Sp1 binding site in the MUC5AC promoter significantly decreased CS-induced promoter activity. Together, these data indicate that CS induces MUC5AC gene transcription predominantly through increased Sp1 nuclear protein levels and increased Sp1 binding to its promoter region.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2015
Benjamin Lee; Keven M. Robinson; Kevin J. McHugh; Erich V. Scheller; Sivanarayana Mandalapu; Chen Chen; Y. Peter Di; Michelle E. Clay; X Richard I. Enelow; Patricia J. Dubin; John F. Alcorn
Suppression of type 17 immunity by type I interferon (IFN) during influenza A infection has been shown to enhance susceptibility to secondary bacterial pneumonia. Although this mechanism has been described in coinfection with gram-positive bacteria, it is unclear whether similar mechanisms may impair lung defense against gram-negative infections. Furthermore, precise delineation of the duration of type I IFN-associated susceptibility to bacterial infection remains underexplored. Therefore, we investigated the effects of preceding influenza A virus infection on subsequent challenge with the gram-negative bacteria Escherichia coli or Pseudomonas aeruginosa and the temporal association between IFN expression with susceptibility to Staphylococcus aureus challenge in a mouse model of influenza and bacterial coinfection. Here we demonstrate that preceding influenza A virus led to increased lung E. coli and P. aeruginosa bacterial burden, which was associated with suppression of type 17 immunity and attenuation of antimicrobial peptide expression. Enhanced susceptibility to S. aureus coinfection ceased at day 14 of influenza infection, when influenza-associated type I IFN levels had returned to baseline levels, further suggesting a key role for type I IFN in coinfection pathogenesis. These findings further implicate type I IFN-associated suppression of type 17 immunity and antimicrobial peptide production as a conserved mechanism for enhanced susceptibility to both gram-positive and gram-negative bacterial coinfection during influenza infection.
Journal of Experimental Medicine | 2010
Paulette Wright; Jun Yu; Y. Peter Di; Robert J. Homer; Geoffrey L. Chupp; Jack A. Elias; Lauren Cohn; William C. Sessa
The reticulon protein Nogo-B is highly expressed in the lungs, and its loss augments lung inflammation in part as a result of decreased expression of the antiinflammatory protein PLUNC.
American Journal of Respiratory Cell and Molecular Biology | 2011
An Soo Jang; Vincent J. Concel; Kiflai Bein; Kelly A. Brant; Shannen Liu; Hannah Pope-Varsalona; Richard A. Dopico; Y. Peter Di; Daren L. Knoell; Aaron Barchowsky; George D. Leikauf
An integral membrane protein, Claudin 5 (CLDN5), is a critical component of endothelial tight junctions that control pericellular permeability. Breaching of endothelial barriers is a key event in the development of pulmonary edema during acute lung injury (ALI). A major irritant in smoke, acrolein can induce ALI possibly by altering CLDN5 expression. This study sought to determine the cell signaling mechanism controlling endothelial CLDN5 expression during ALI. To assess susceptibility, 12 mouse strains were exposed to acrolein (10 ppm, 24 h), and survival monitored. Histology, lavage protein, and CLDN5 transcripts were measured in the lung of the most sensitive and resistant strains. CLDN5 transcripts and phosphorylation status of forkhead box O1 (FOXO1) and catenin (cadherin-associated protein) beta 1 (CTNNB1) proteins were determined in control and acrolein-treated human endothelial cells. Mean survival time (MST) varied more than 2-fold among strains with the susceptible (BALB/cByJ) and resistant (129X1/SvJ) strains (MST, 17.3 ± 1.9 h vs. 41.4 ± 5.1 h, respectively). Histological analysis revealed earlier perivascular enlargement in the BALB/cByJ than in 129X1/SvJ mouse lung. Lung CLDN5 transcript and protein increased more in the resistant strain than in the susceptible strain. In human endothelial cells, 30 nM acrolein increased CLDN5 transcripts and increased p-FOXO1 protein levels. The phosphatidylinositol 3-kinase inhibitor LY294002 diminished the acrolein-induced increased CLDN5 transcript. Acrolein (300 nM) decreased CLDN5 transcripts, which were accompanied by increased FOXO1 and CTNNB1. The phosphorylation status of these transcription factors was consistent with the observed CLDN5 alteration. Preservation of endothelial CLDN5 may be a novel clinical approach for ALI therapy.
Journal of Immunology | 2013
Yanyan Liu; Marissa E. Di; Hong Wei Chu; Xinyu Liu; Ling Wang; Sally E. Wenzel; Y. Peter Di
The airway epithelium is the first line of host defense against pathogens. The short palate, lung, and nasal epithelium clone (SPLUNC)1 protein is secreted in respiratory tracts and is a member of the bacterial/permeability increasing (BPI) fold–containing protein family, which shares structural similarities with BPI-like proteins. On the basis of its homology with BPIs and restricted expression of SPLUNC1 in serous cells of submucosal glands and surface epithelial cells of the upper respiratory tract, SPLUNC1 is thought to possess antimicrobial activity in host defense. SPLUNC1 is also reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to determine the in vivo functions of SPLUNC1 following Pseudomonas aeruginosa infection and to elucidate the underlying mechanism by using a knockout (KO) mouse model with a genetic ablation of Splunc1. Splunc1 KO mice showed accelerated mortality and increased susceptibility to P. aeruginosa infection with significantly decreased survival rates, increased bacterial burdens, exaggerated tissue injuries, and elevated proinflammatory cytokine levels as compared with those of their wild-type littermates. Increased neutrophil infiltration in Splunc1 KO mice was accompanied by elevated chemokine levels, including Cxcl1, Cxcl2, and Ccl20. Furthermore, the expression of several epithelial secretory proteins and antimicrobial molecules was considerably suppressed in the lungs of Splunc1 KO mice. The deficiency of Splunc1 in mouse airway epithelium also results in increased biofilm formation of P. aeruginosa. Taken together, our results support that the ablation of Splunc1 in mouse airways affects the mucociliary clearance, resulting in decreased innate immune response during Pseudomonas-induced respiratory infection.
Infection and Immunity | 2013
Sameera Sayeed; Laura Nistico; Claudette M. St. Croix; Y. Peter Di
ABSTRACT The human short PLUNC1 (SPLUNC1) protein has been identified as a component of the pulmonary antimicrobial response based on its structural similarity to the bactericidal/permeability-increasing (BPI) protein. Using a genetically modified mouse model, we recently verified the antimicrobial activity of SPLUNC1 against Pseudomonas aeruginosa in vivo. To further define the mechanism of epithelial SPLUNC1-mediated antibacterial action, we carried out studies to determine how SPLUNC1 protects the host from acute respiratory infections. P. aeruginosa treated with recombinant human SPLUNC1 protein showed decreased growth in vitro. This antibacterial activity was due to growth inhibition, as a consequence of a SPLUNC1-induced increase in bacterial cell permeability. Removal of SPLUNC1 allowed the recovery of P. aeruginosa and suggested no permanent cell injury or direct killing of bacteria. Further investigation showed coating of bacterial cells by SPLUNC1. We suggest that this “bacterial cell coating” is necessary for the bacteriostatic function of SPLUNC1. Additionally, we demonstrated a novel role for SPLUNC1 as a chemoattractant that facilitated migration of macrophages and neutrophils. Taking the findings together, we propose synergistic roles for human SPLUNC1 as an antibacterial agent with bacteriostatic and chemotactic activities.
American Journal of Respiratory Cell and Molecular Biology | 2012
George D. Leikauf; Hannah Pope-Varsalona; Vincent J. Concel; Pengyuan Liu; Kiflai Bein; Annerose Berndt; Timothy M. Martin; Koustav Ganguly; An Soo Jang; Kelly A. Brant; Richard A. Dopico; Swapna Upadhyay; Y. Peter Di; Qian Li; Zhen Hu; Louis J. Vuga; Mario Medvedovic; Naftali Kaminski; Ming You; Danny Alexander; Jonathan E. McDunn; Daniel R. Prows; Daren L. Knoell; James P. Fabisiak
The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4.