Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ya-Ge Jin is active.

Publication


Featured researches published by Ya-Ge Jin.


Hypertension | 2016

Mnk1 (Mitogen-Activated Protein Kinase–Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice

Yuan Yuan; Ling Yan; Qing-Qing Wu; Heng Zhou; Ya-Ge Jin; Zhou-Yan Bian; Wei Deng; Zheng Yang; Difei Shen; Xiao-Feng Zeng; Sha-Sha Wang; Hongliang Li; Qizhu Tang

Identifying the key factor involved in cardiac remodeling is critically important for developing novel strategies to protect against heart failure. Here, the role of Mnk1 (mitogen-activated protein kinase–interacting kinase 1) in cardiac remodeling was clarified. Cardiac remodeling was induced by transverse aortic constriction in Mnk1-knockout mice and their wild-type control mice. After 4 weeks of transverse aortic constriction, Mnk1-knockout mice developed exaggerated cardiac hypertrophy, fibrosis, dysfunction, and cardiomyocyte apoptosis and showed increased ERK1/2 (extracellular signal–regulated kinase 1/2) activation along with reduced sprouty2 expression. In line with the in vivo studies, Mnk1 knockdown by Mnk1 siRNA transfection induced exaggerated angiotensin II–induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). Moreover, adenovirus-mediated overexpression of Mnk1 in NRVMs protected cardiomyocytes from angiotensin II–induced hypertrophy. In addition, overexpression of sprouty2 rescued NRVMs with Mnk1 knockdown from angiotensin II–induced hypertrophy. In accordance with the in vivo studies, as compared with the control group, Mnk1 knockdown led to hyperphosphorylation of ERK1/2 and suppression of the sprouty2 expression in angiotensin II–treated NRVMs; furthermore, Mnk1 overexpression led to hypophosphorylation of ERK1/2 in angiotensin II–treated NRVMs. In addition, sprouty2 overexpression suppressed the activation of ERK1/2 in angiotensin II–treated NRVMs with Mnk1 knockdown. Impressively, MnK1-knockout mice with overexpression of sprouty2 exhibited signs of a blunted cardiac hypertrophic response. Mnk1 likely carries out a suppressive function in cardiac hypertrophy via regulating the sprouty2/ERK1/2 pathway. It implicates Mnk1 in the development of cardiac remodeling.


Clinical Science | 2018

A77 1726 (leflunomide) blocks and reverses cardiac hypertrophy and fibrosis in mice

Zhen-Guo Ma; Xin Zhang; Yu-Pei Yuan; Ya-Ge Jin; Ning Li; Chun-Yan Kong; Peng Song; Qizhu Tang

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


Ppar Research | 2017

Puerarin Protects against Cardiac Fibrosis Associated with the Inhibition of TGF-β1/Smad2-Mediated Endothelial-to-Mesenchymal Transition

Ya-Ge Jin; Yuan Yuan; Qing-Qing Wu; Ning Zhang; Di Fan; Yan Che; Zhao-Peng Wang; Yang Xiao; Sha-Sha Wang; Qi-Zhu Tang

Background Puerarin is a kind of flavonoids and is extracted from Chinese herb Kudzu root. Puerarin is widely used as an adjuvant therapy in Chinese clinics. But little is known about its effects on regulating cardiac fibrosis. Methods Mice were subjected to transverse aorta constriction (TAC) for 8 weeks; meanwhile puerarin was given 1 week after TAC. Cardiac fibrosis was assessed by pathological staining. The mRNA and protein changes of CD31 and vimentin in both animal and human umbilical vein endothelial cells (HUVECs) models were detected. Immunofluorescence colocalization of CD31 and vimentin and scratch test were carried out to examine TGF-β1-induced changes in HUVECs. The agonist and antagonist of peroxisome proliferator-activated receptor-γ (PPAR-γ) were used to explore the underlying mechanism. Results Puerarin mitigated TAC-induced cardiac fibrosis, accompanied with suppressed endothelial-to-mesenchymal transition (EndMT). The consistent results were achieved in HUVECs model. TGF-β1/Smad2 signaling pathway was blunted and PPAR-γ expression was upregulated in puerarin-treated mice and HUVECs. Pioglitazone could reproduce the protective effect in HUVECs, while GW9662 reversed this effect imposed by puerarin. Conclusion Puerarin protected against TAC-induced cardiac fibrosis, and this protective effect may be attributed to the upregulation of PPAR-γ and the inhibition of TGF-β1/Smad2-mediated EndMT.


Planta Medica | 2017

Aucubin Protects against TGFβ1-Induced Cardiac Fibroblasts Activation by Mediating the AMPKα/mTOR Signaling Pathway

Yang Xiao; Wei Chang; Qing-Qing Wu; Xiao-Han Jiang; Ming‐Xia Duan; Ya-Ge Jin; Qizhu Tang

Fibrosis is a key feature of various cardiovascular diseases and compromises cardiac systolic and diastolic performance. The lack of effective anti-fibrosis drugs is a major contributor to the increasing prevalence of heart failure. The present study was performed to investigate whether the iridoid aucubin alleviates cardiac fibroblast activation and its underlying mechanisms. Neonatal rat cardiac fibroblasts were incubated with aucubin (1, 10, 20, 50 µM) followed by transforming growth factor β1 (TGFβ1, 10 ng/mL) stimulation for 24 h. Fibrosis proliferation was measured by cell counting kit-8 assay. The differentiation of fibroblasts into myofibroblasts was determined by measuring the expression of α-smooth muscle actin. Then, the expressions levels of cardiac fibrosis-related proteins in myofibroblasts were analyzed by western blot and real-time PCR to confirm the anti-fibrosis effect of aucubin. As a result, aucubin suppressed TGFβ1-induced proliferation in fibroblasts and inhibited the TGFβ1-induced activation of fibroblasts to myofibroblasts. In addition, aucubin further attenuated fibrosis-related protein expression in myofibroblasts. Furthermore, this protective effect was related to increased adenosine 5′-monophosphate-activated protein kinase (AMPK) phosphorylation and decreased mammalian target of rapamycin (mTOR) phosphorylation, which was confirmed by an mTOR inhibitor (rapamycin), an AMPK agonist (AICAR) and an AMPKα inhibitor compound C. Collectively, our findings suggest that aucubin protects against TGFβ1-induced fibroblast proliferation, activation and function by regulating the AMPKα/mTOR signal axis.


Cellular Physiology and Biochemistry | 2017

Nobiletin, a Polymethoxy Flavonoid, Protects Against Cardiac Hypertrophy Induced by Pressure-Overload via Inhibition of NAPDH Oxidases and Endoplasmic Reticulum Stress

Ning Zhang; Wen-Ying Wei; Zheng Yang; Yan Che; Ya-Ge Jin; Hai-Han Liao; Sha-Sha Wang; Wei Deng; Qizhu Tang

Background/Aims: An increase in oxidative stress has been implicated in the pathophysiology of pressure-overload induced cardiac hypertrophy. Nobiletin (NOB), extracted from the fruit peel of citrus, possesses anti-oxidative property. Our study aimed to investigate the protective role of NOB in the progression of cardiac hypertrophy in vivo and in vitro. Methods: Mice received aortic banding (AB) operation to induce cardiac hypertrophy. Experimental groups were as follows: sham+vehicle (VEH/SH), sham+NOB (NOB/SH), AB+vehicle (VEH/AB), and AB+ NOB (NOB/AB). Animals (n = 15 per group) were treated with vehicle or NOB (50 mg/kg) for 4 weeks after disease onset. Results: NOB prevented cardiac hypertrophy induced by aortic banding (AB), as assessed by the cross-sectional area of cardiomyocytes, heart weight-to-body weight ratio, gene expression of hypertrophic markers and cardiac function. In addition, NOB supplementation blunted the increased expression of NAPDH oxidase (NOX) 2 and NOX4 and mitigated endoplasmic reticulum (ER) stress and myocyte apoptosis in cardiac hypertrophy. Furthermore, NOB treatment attenuated the neonatal rat cardiomyocyte (NRCM) hypertrophic response stimulated by phenylephrine (PE) and alleviated ER stress. However, our data showed that NOB dramatically inhibited NOX2 expression but not NOX4 in vitro. Finally, we found that knockdown of NOX2 attenuated ER stress in NRCMs stimulated by PE. Conclusions: Inhibition of oxidative and ER stress by NOB in the myocardium may represent a potential therapy for cardiac hypertrophy. Moreover, there is a direct role of NOX2 in regulating ER stress stimulated by PE.


Cellular Physiology and Biochemistry | 2017

Sesamin Protects Against Cardiac Remodeling Via Sirt3/ROS Pathway.

Di Fan; Zheng Yang; Fang-Yuan Liu; Ya-Ge Jin; Ning Zhang; Jian Ni; Yuan Yuan; Hai-Han Liao; Qing-Qing Wu; Man Xu; Wei Deng; Qizhu Tang

Background/Aims: Cardiac remodeling is associated with oxidative stress. Sesamin, a well-known antioxidant from sesamin seeds, have been used extensively as traditional health foods. However, there is little known about the effect of sesamin on cardiac remodeling. Therefore, the present study aimed to determine whether sesamin could protect against cardiac remodeling and to clarify potential molecular mechanisms. Methods: The mice were subjected to either transverse aortic constriction (TAC) or sham surgery (control group). Beginning one week after surgery, the mice were oral gavage treated with sesamin (100mg·kg-1·day-1) or vehicle for 3 weeks. Cardiac hypertrophy was assessed by echocardiographic parameters, histological analyses and hypertrophic markers. Results: Sesamin alleviated cardiac hypertrophy, inhibited fibrosis and attenuated the inflammatory response. The increased production of reactive oxygen species, the activation of ERK1/2-dependent nuclear factor-κB and the increased level of Smad2 phosphorylation were observed in cardiac remolding model that were treated with sesamin. Furthermore, TAC induced alteration of Sirt3 and SOD2 was normalized by sesamin treatment. Finally, a selective Sirt3 inhibitor 3-TYP blocks all the protective role of sesamin, suggesting that a Sirt3-dependent effect of sesamin on cardiac remodeling. Conclusion: Sesamin improves cardiac function and prevents the development of cardiac hypertrophy via Sirt3/ROS pathway. Our results suggest the protective effect of sesamin on cardiac remolding.


Basic Research in Cardiology | 2018

T-bet deficiency attenuates cardiac remodelling in rats.

Zhen-Guo Ma; Jia Dai; Yu-Pei Yuan; Zhou-Yan Bian; Si-Chi Xu; Ya-Ge Jin; Xin Zhang; Qizhu Tang

Previous studies have suggested the involvement of CD4 + T lymphocytes in cardiac remodelling. T-bet can direct Th1 lineage commitment. This study aimed to investigate the functional significance of T-bet in cardiac remodelling induced by pressure overload using T-bet global knockout rats. Increased T-bet levels were observed in rodent and human hypertrophied hearts. T-bet deficiency resulted in a less severe hypertrophic phenotype in rats. CD4 + T-lymphocyte reconstitution in T-bet−/− rats resulted in aggravated cardiac remodelling. T-cell homing molecule expression and cytokine secretion were altered in T-bet-deficient rat hearts. Administration of exogenous interferon-γ (IFN-γ) offset T-bet deficiency-mediated cardioprotection. Cardiomyocytes cultured in T-bet−/− CD4 + T-cell-conditioned media showed a reduced hypertrophic response after hypertrophic stimuli, which was abolished by an IFN-γ-neutralizing antibody. Taken together, our findings show that T-bet deficiency attenuates pressure overload-induced cardiac remodelling in rats. Specifically, targeting T-bet in T cells may be of great importance for the treatment of pathological cardiac remodelling and heart failure.


Basic Research in Cardiology | 2018

Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target

Heng Zhou; Ning Li; Yuan Yuan; Ya-Ge Jin; Haipeng Guo; Wei Deng; Qi-Zhu Tang

Cardiovascular diseases (CVDs) are the primary causes of death worldwide. Among the numerous signaling molecules involved in CVDs, transcriptional factors directly influence gene expression and play a critical role in regulating cell function and the development of diseases. Activating transcription factor (ATF) 3 is an adaptive-response gene in the ATF/cAMP responsive element-binding (CREB) protein family of transcription factors that acts as either a repressor or an activator of transcription via the formation of homodimers or heterodimers with other ATF/CREB members. A appropriate ATF3 expression is important for the normal physiology of cells, and dysfunction of ATF3 is associated with various pathophysiological responses such as inflammation, apoptosis, oxidative stress and endoplasmic reticulum stress, and diseases, including CVDs. This review focuses on the role of ATF3 in cardiac hypertrophy, heart failure, atherosclerosis, ischemic heart diseases, hypertension and diabetes mellitus to provide a novel therapeutic target for CVDs.


Molecular and Cellular Biochemistry | 2016

Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy.

Ning Zhang; Zheng Yang; Shizhao Xiang; Ya-Ge Jin; Wen-Ying Wei; Zhou-Yan Bian; Wei Deng; Qizhu Tang


Food & Function | 2017

Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways

Di Fan; Zheng Yang; Yuan Yuan; Qing-Qing Wu; Man Xu; Ya-Ge Jin; Qizhu Tang

Collaboration


Dive into the Ya-Ge Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge