Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ya-Ju Hsieh is active.

Publication


Featured researches published by Ya-Ju Hsieh.


Journal of Oncology | 2011

Evaluation of lentiviral-mediated expression of sodium iodide symporter in anaplastic thyroid cancer and the efficacy of in vivo imaging and therapy.

Chien-Chih Ke; Ya-Ju Hsieh; Luen Hwu; Fu-Hui Wang; Fu-Du Chen; Lee-Shing Chu; Oscar K. Lee; Chin-Wen Chi; Chen-Hsen Lee; Ren-Shyan Liu

Anaplastic thyroid carcinoma (ATC) is one of the most deadly cancers. With intensive multimodalities of treatment, the survival remains low. ATC is not sensitive to 131I therapy due to loss of sodium iodide symporter (NIS) gene expression. We have previously generated a stable human NIS-expressing ATC cell line, ARO, and the ability of iodide accumulation was restored. To make NIS-mediated gene therapy more applicable, this study aimed to establish a lentiviral system for transferring hNIS gene to cells and to evaluate the efficacy of in vitro and in vivo radioiodide accumulation for imaging and therapy. Lentivirus containing hNIS cDNA were produced to transduce ARO cells which do not concentrate iodide. Gene expression, cell function, radioiodide imaging and treatment were evaluated in vitro and in vivo. Results showed that the transduced cells were restored to express hNIS and accumulated higher amount of radioiodide than parental cells. Therapeutic dose of 131I effectively inhibited the tumor growth derived from transduced cells as compared to saline-treated mice. Our results suggest that the lentiviral system efficiently transferred and expressed hNIS gene in ATC cells. The transduced cells showed a promising result of tumor imaging and therapy.


Translational Stroke Research | 2017

Evolutional Characterization of Photochemically Induced Stroke in Rats: a Multimodality Imaging and Molecular Biological Study.

Naiwei Liu; Chien-Chih Ke; Yonghua Zhao; Yi-An Chen; Kim-Chuan Chan; David Tat-Wei Tan; Jhih-Shian Lee; You-Yin Chen; Tun-Wei Hsu; Ya-Ju Hsieh; Chi-Wei Chang; Bang-Hung Yang; Wen-Sheng Huang; Ren-Shyan Liu

Photochemically induced cerebral ischemia is an easy-manipulated, reproducible, relatively noninvasive, and lesion controllable model for translational study of ischemic stroke. In order to longitudinally investigate the characterization of the model, magnetic resonance imaging, 18F-2-deoxy-glucose positron emission tomography, fluorescence, and bioluminescence imaging system were performed in correlation with triphenyl tetrazolium chloride (TTC), hematoxylin-eosin staining, and immunohistochemistry examinations of glial fibrillary acidic protein, CD68, NeuN, von willebrand factor, and α-smooth muscle actin in the infarct zone. The results suggested that the number of inflammatory cells, astrocytes, and neovascularization significantly elevated in peri-infarct region from day 7 and a belt of macrophage/microglial and astrocytes was formed surrounding infarct lesion at day 14. Both vasogenic and cytotoxic edema, as well as blood brain-barrier leakage, occurred since day 1 after stroke induction and gradually attenuated with time. Numerous cells other than neuronal cells infiltrated into infarct lesion, which resulted in no visible TTC negative regional existence at day 14. Furthermore, recovery of cerebral blood flow and glucose utilization in peri-infarct zone were noted and more remarkably than that in infarct core following the stroke progression. In conclusion, these characterizations may be highly beneficial to the development of therapeutic strategies for ischemic stroke.


The Journal of Nuclear Medicine | 2014

P21-Driven Multifusion Gene System for Evaluating the Efficacy of Histone Deacetylase Inhibitors by In Vivo Molecular Imaging and for Transcription Targeting Therapy of Cancer Mediated by Histone Deacetylase Inhibitor

Ya-Ju Hsieh; Luen Hwu; Yi-Chieh Chen; Chien-Chih Ke; Fu-Du Chen; Hsin-Ell Wang; Kang-Ping Lin; Hsin-Hsien Yeh; Chi-Wei Chang; Ren-Shyan Liu

Overexpressed histone deacetylase (HDAC) activity has been linked with tumor initiation and progression that prompt the development of histone deacetylase inhibitors (HDACIs) as anticancer agents. HDACI was reported to be able to activate p21 promoter through the SP1 binding sites in the proximal region of p21WAF1/CIP1 promoter. In this study, we established a p21WAF1/CIP1 promoter–driven triple-fused reporter gene system (p21-3H) to evaluate the efficacy of HDACI and the ganciclovir (GCV)-mediated anticancer effect contributed by HDACI-induced and p21-driven truncated herpes simplex virus-1 thymidine kinase sr39 mutant (ttksr39) in vitro and in vivo. Methods: The p21-3H construct was generated and stably or transiently transfected into H1299 cell lines. These cells were treated with trichostatin A or vorinostat (suberoylanilide hydroxamic acid [SAHA]) to evaluate the activation of p21 promoter–driven reporter gene expression by in vitro confocal fluorescence microscopy, luciferase assay, 2′-fluoro-2′-deoxyarabinofuranosyl-5-ethyluracil (3H-FEAU) cellular uptake, in vivo bioluminescence imaging, and 9-(4-18F-fluoro-3-hydroxymethylbutyl) guanine (18F-FHBG) small-animal PET imaging. The therapeutic efficacy on p21-3H–expressing tumor xenografts was assessed by daily administration with SAHA (100 mg/kg intraperitoneally) or GCV (20 mg/kg) for 9 d, followed by tumor volume measurement. Results: On treatment with trichostatin A or SAHA, H1299 cells carrying p21-3H showed a significant increase of luciferase activity, cellular uptake of 3H-FEAU (Moravek), and DsRed expression. In vivo tumor xenografts carrying p21-3H also showed increased luciferase activity by luminescent imaging and enhanced accumulation of 18F-FHBG by small-animal PET imaging. Furthermore, when cells transfected with p21-3H or p21/PstI-3H (which lacks p53-binding sites) were treated, the increase of luciferase activity was similar in both groups, indicating that HDACI-induced p21 promoter activation is independent of p53. Both in vitro and in vivo results showed improved therapeutic effect by combined treatment of GCV and HDACI. Conclusion: We have established an HDACI-inducible, p21-driven reporter system that has the potential for evaluating the anticancer effect of HDACIs on cancer cells by multiple molecular imaging modalities. Furthermore, ttksr39 in a p21-3H reporter construct provides a potential combination with thymidine kinase–mediated gene therapy to optimize the therapeutic benefit of HDACI.


Scientific Reports | 2017

Quantitative Measurement of the Thyroid Uptake Function of Mouse by Cerenkov Luminescence Imaging

Chien-Chih Ke; Zi-Ming He; Ya-Ju Hsieh; Chia-Wen Huang; Jia-Je Li; Luen Hwu; Yi-An Chen; Bang-Hung Yang; Chi-Wei Chang; Wen-Sheng Huang; Ren-Shyan Liu

Cerenkov luminescence imaging (CLI) has been an evolutional and alternative approach of nuclear imaging in basic research. This study aimed to measure the 131I thyroid uptake of mouse using CLI for assessment of thyroid function. Quantification of 131I thyroid uptake of mice in euthyroid, hypothyroid and hyperthyroid status was performed by CLI and γ-scintigraphy at 24 hours after injection of 131I. The 131I thyroid uptake was calculated using the equation: (thyroid counts − background counts)/(counts of injected dose of 131I) × 100%. Serum T4 concentration was determined to evaluate the thyroid function. The radioactivity of 131I was linearly correlated with the CL signals in both in vitro and in vivo measurements. CLI showed a significant decrease and increase of 131I thyroid uptake in the mice in hypo- and hyperfunctioning status, respectively, and highly correlated with that measured by γ-scintigraphy. However, the percent thyroid uptake measured by CLI were one-fifth of those measured by γ-scintigraphy due to insufficient tissue penetration of CL. These results indicate that CLI, in addition to nuclear imaging, is able to image and evaluate the 131I thyroid uptake function in mice in preclinical and research settings.


Scientific Reports | 2017

Prognosis of Hippocampal Function after Sub-lethal Irradiation Brain Injury in Patients with Nasopharyngeal Carcinoma

Sharon Chia-Ju Chen; Yoshifumi Abe; Pen-Tzu Fang; Ya-Ju Hsieh; Yung-I Yang; Tzu-Ying Lu; Shoji Oda; Hiroshi Mitani; Shi-Long Lian; Yu-Chang Tyan; Chih-Jen Huang; Tatsuhiro Hisatsune

This work emphasizes the value of assessing hippocampal function by making a timely MRI-based prognosis following a minor dose of hippocampal irradiation after nasopharyngeal carcinomas (NPC) radiotherapy. A quasi-experiment with case-control design and functional assessments (e.g., neuroimaging analysis with fMRI) was conducted to assess hippocampal function after radiotherapy. We delivered 70 Gy of irradiation to nasopharyngeal carcinomas by 6MV helical radiotherapy and collected data from twenty NPC patients and 24 healthy age-matched subjects. Inevitably, hippocampi also received an average dose of 6.89 Gy (range, 2.0–14 Gy). Seed-based functional connectivity of the hippocampus was applied to estimate the cognitive alteration by time before, one month, and four months after irradiation. Afterward, longitudinal-and-cross-sessional statistical inference was determined with time-dependent measurement analysis of variance (ANOVA) with controlled covariance. Over time, there were longitudinal changes in the functional connectivity of hippocampal-related cortices, including the right middle frontal lobe, left superior temporal lobe, and left postcentral gyrus. The findings indicate the presence of functional plasticity, demonstrating how minor irradiation affects functional performance during the early delayed phase of irradiation-induced brain injury.


Medicine | 2017

A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers

Yu Hao Lee; Ya-Ju Hsieh; Yung-Jong Shiah; Yu-Huei Lin; Chiao-Yun Chen; Yu-Chang Tyan; JiaCheng GengQiu; Chung-Yao Hsu; Sharon Chia-Ju Chen

Abstract To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis.


BioMed Research International | 2014

Rational design of a triple reporter gene for multimodality molecular imaging.

Ya-Ju Hsieh; Luen Hwu; Chien-Chih Ke; Skye Hsin-Hsien Yeh; Chien-Feng Lin; Fu-Du Chen; Hsin-Ell Wang; Kang-Ping Lin; Ran-Chou Chen; Ren-Shyan Liu

Multimodality imaging using noncytotoxic triple fusion (TF) reporter genes is an important application for cell-based tracking, drug screening, and therapy. The firefly luciferase (fl), monomeric red fluorescence protein (mrfp), and truncated herpes simplex virus type 1 thymidine kinase SR39 mutant (ttksr39) were fused together to create TF reporter gene constructs with different order. The enzymatic activities of TF protein in vitro and in vivo were determined by luciferase reporter assay, H-FEAU cellular uptake experiment, bioluminescence imaging, and micropositron emission tomography (microPET). The TF construct expressed in H1299 cells possesses luciferase activity and red fluorescence. The tTKSR39 activity is preserved in TF protein and mediates high levels of H-FEAU accumulation and significant cell death from ganciclovir (GCV) prodrug activation. In living animals, the luciferase and tTKSR39 activities of TF protein have also been successfully validated by multimodality imaging systems. The red fluorescence signal is relatively weak for in vivo imaging but may expedite FACS-based selection of TF reporter expressing cells. We have developed an optimized triple fusion reporter construct DsRedm-fl-ttksr39 for more effective and sensitive in vivo animal imaging using fluorescence, bioluminescence, and PET imaging modalities, which may facilitate different fields of biomedical research and applications.


Alcoholism: Clinical and Experimental Research | 2018

Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain

Ya-Ju Hsieh; Liang-Chih Wu; Chien-Chih Ke; Chi-Wei Chang; Jung-Wen Kuo; Wen-Sheng Huang; Fu-Du Chen; Bang-Hung Yang; Hsiao-Ting Tai; Sharon Chia-Ju Chen; Ren-Shyan Liu

BACKGROUND Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1-11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1-11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. METHODS [1-11 C]-acetate positron emission tomography (PET) with dynamic measurement of K1 and k2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. RESULTS PET imaging demonstrated decreased [1-11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K1 and clearance rate constant k2 were decreased in acutely intoxicated rats. No significant change was noted in K1 and k2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. CONCLUSIONS In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1-11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1-11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain.


Physica Medica | 2017

Adapted estimate of neural activity based on blood-oxygen-level dependent signal by a model-free spatio-temporal clustering analysis

Sharon Chia-Ju Chen; Ya-Ju Hsieh; Yu-Chang Tyan; Keh-Shih Chuang; Jui-Jen Lai; Chin-Ching Chang

In this study, we detected brain activity by comparing the overall temporal response of the blood oxygen level referring to hemodynamic response with a modeled hemodynamic response (MHR). However, in a conventional analysis by statistical parametric mapping (SPM) method, the MHR is assumed to be a fixed-response function, which may bias the conclusions about brain activation, such as the shapes of the response curve or the different response delays to stimuli. Therefore, to improve detection efficacy, we applied a spatio-temporal clustering analysis (sTCA) to determine the MHR, which is calculated from the prospective voxels with no a priori information about the experiment design. With the sTCA method, these prospective voxels are detected by the feature with the largest temporal clustering within which these voxels react simultaneously, irrespective of where the variant hemodynamic response occurs. This estimated MHR (eMHR) is then applied to search for brain activation. Preliminary results show that the eMHR signal response closely resembles the real signal response of the target area. Moreover, the activation detection using eMHR method is more sensitive for the human visual and motor tasks than that with the canonical hemodynamic response embedded in the SPM analysis as the default MHR (dMHR). The more precise location of brain activation made possible by the improved sensitivity should provide helpful information about the stimulation of neuron activity.


Anticancer Research | 2007

Radioiodide imaging and treatment of ARO cancer xenograft in a mouse model after expression of human sodium iodide symporter.

Ya-Ju Hsieh; Chien-Chih Ke; Ren-Shyan Liu; Fu-Hui Wang; Kam-Tsun Tang; Chin-Wen Chi; Fu-Du Chen; Chen-Hsen Lee

Collaboration


Dive into the Ya-Ju Hsieh's collaboration.

Top Co-Authors

Avatar

Ren-Shyan Liu

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Chien-Chih Ke

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Fu-Du Chen

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Luen Hwu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Hsin-Ell Wang

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Sharon Chia-Ju Chen

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Chi-Wei Chang

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Fu-Hui Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bang-Hung Yang

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Chen-Hsen Lee

National Yang-Ming University

View shared research outputs
Researchain Logo
Decentralizing Knowledge