Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ya-Min Tian is active.

Publication


Featured researches published by Ya-Min Tian.


Cell | 2001

C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation

Andrew C.R. Epstein; Jonathan M. Gleadle; Luke A. McNeill; Kirsty S. Hewitson; O'Rourke Jf; David R. Mole; Mridul Mukherji; Eric Metzen; Michael I. Wilson; Anu Dhanda; Ya-Min Tian; Norma Masson; Donald L. Hamilton; Panu Jaakkola; Robert Barstead; Jonathan Hodgkin; Patrick H. Maxwell; Christopher W. Pugh; Christopher J. Schofield; Peter J. Ratcliffe

HIF is a transcriptional complex that plays a central role in mammalian oxygen homeostasis. Recent studies have defined posttranslational modification by prolyl hydroxylation as a key regulatory event that targets HIF-alpha subunits for proteasomal destruction via the von Hippel-Lindau ubiquitylation complex. Here, we define a conserved HIF-VHL-prolyl hydroxylase pathway in C. elegans, and use a genetic approach to identify EGL-9 as a dioxygenase that regulates HIF by prolyl hydroxylation. In mammalian cells, we show that the HIF-prolyl hydroxylases are represented by a series of isoforms bearing a conserved 2-histidine-1-carboxylate iron coordination motif at the catalytic site. Direct modulation of recombinant enzyme activity by graded hypoxia, iron chelation, and cobaltous ions mirrors the characteristics of HIF induction in vivo, fulfilling requirements for these enzymes being oxygen sensors that regulate HIF.


EMBO Reports | 2011

The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases.

Rasheduzzaman Chowdhury; Kar Kheng Yeoh; Ya-Min Tian; Lars Hillringhaus; Eleanor A. L. Bagg; Nathan R. Rose; Ivanhoe K. H. Leung; Xuan S Li; Esther C. Y. Woon; Ming Yang; Michael A. McDonough; Oliver N. King; Ian J. Clifton; Robert J. Klose; Timothy D. W. Claridge; Peter J. Ratcliffe; Christopher J. Schofield; Akane Kawamura

Mutations in isocitrate dehydrogenases (IDHs) have a gain‐of‐function effect leading to R(−)‐2‐hydroxyglutarate (R‐2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R‐ and S‐2HG inhibit 2‐oxoglutarate (2OG)‐dependent oxygenases with varying potencies. Half‐maximal inhibitory concentration (IC50) values for the R‐form of 2HG varied from approximately 25 μM for the histone Nε‐lysine demethylase JMJD2A to more than 5 mM for the hypoxia‐inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH‐associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Peptide blockade of HIFα degradation modulates cellular metabolism and angiogenesis

Willam C; Norma Masson; Ya-Min Tian; Mahmood Sa; Michael I. Wilson; Bicknell R; Kai-Uwe Eckardt; Patrick H. Maxwell; Peter J. Ratcliffe; Christopher W. Pugh

Hypoxia-inducible factor-1 (HIF) is a transcription factor central to oxygen homeostasis. It is regulated via its α isoforms. In normoxia they are ubiquitinated by the von Hippel-Lindau E3 ligase complex and destroyed by the proteasome, thereby preventing the formation of an active transcriptional complex. Oxygen-dependent enzymatic hydroxylation of either of two critical prolyl residues in each HIFα chain has recently been identified as the modification necessary for targeting by the von Hippel-Lindau E3 ligase complex. Here we demonstrate that polypeptides bearing either of these prolyl residues interfere with the degradative pathway, resulting in stabilization of endogenous HIFα chains and consequent up-regulation of HIF target genes. Similar peptides in which the prolyl residues are mutated are inactive. Induction of peptide expression in cell cultures affects physiologically important functions such as glucose transport and leads cocultured endothelial cells to form tubules. Coupling of these HIFα sequences to the HIV tat translocation domain allows delivery of recombinant peptide to cells with resultant induction of HIF-dependent genes. Injection of tat-HIF polypeptides in a murine sponge angiogenesis assay causes a markedly accelerated local angiogenic response and induction of glucose transporter-1 gene expression. These results demonstrate the feasibility of using these polypeptides to enhance HIF activity, opening additional therapeutic avenues for ischemic diseases.


Journal of Biological Chemistry | 2004

Genetic analysis of the role of the asparaginyl hydroxylase FIH in regulating HIF transcriptional target genes

Ineke P. Stolze; Ya-Min Tian; Rebecca J. Appelhoff; Helen Turley; Charles C. Wykoff; Jonathan M. Gleadle; Peter J. Ratcliffe

Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that directs a broad range of cellular responses to hypoxia. Recent studies have defined a set of 2-oxoglutarate and Fe(II)-dependent dioxygenases that modify HIF-α subunits by prolyl and asparaginyl hydroxylation. These processes potentially provide a dual system of control, down-regulating both HIF-α stability and transcriptional activity. Although genetic analyses in both primitive organisms and mammalian cells have demonstrated a critical role for the prolyl hydroxylase pathway in the regulation of HIF, analogous studies have not been performed on the HIF asparaginyl hydroxylase pathway, and its role in directing the expression of endogenous HIF transcriptional targets has not yet been clearly defined. Here we demonstrate, using small interfering RNA-mediated FIH suppression and controlled overexpression by a doxycycline-inducible system, that alterations in FIH expression in both directions have reciprocal effects on the expression of a range of HIF target genes. These effects were observed in normoxic and severely hypoxic cells but not anoxic cells. Evidence for FIH activity in severely hypoxic cells contrasted with results for the prolyl hydroxylase PHD2, suggesting that these enzymes display different oxygen dependence in vivo, with PHD2 requiring higher levels of oxygen for biological activity. Our results demonstrate an important physiological role for FIH in regulating HIF-dependent target genes over a wide range of oxygen tensions and indicate that inhibition of FIH has the potential to augment HIF target gene expression even in severe hypoxia.


Circulation Research | 2004

Novel Mechanism of Action for Hydralazine Induction of Hypoxia-Inducible Factor-1 α, Vascular Endothelial Growth Factor, and Angiogenesis by Inhibition of Prolyl Hydroxylases

Helen J. Knowles; Ya-Min Tian; David R. Mole; Adrian L. Harris

The vasodilator hydralazine, used clinically in cardiovascular therapy, relaxes arterial smooth muscle by inhibiting accumulation of intracellular free Ca2+ via an unidentified primary target. Collagen prolyl hydroxylase is a known target of hydralazine. We therefore investigated whether inhibition of other members of this enzyme family, namely the hypoxia-inducible factor (HIF)-regulating O2-dependent prolyl hydroxylase domain (PHD) enzymes, could represent a novel mechanism of action. Hydralazine induced rapid and transient expression of HIF-1&agr; and downstream targets of HIF (endothelin-1, adrenomedullin, haem oxygenase 1, and vascular endothelial growth factor [VEGF]) in endothelial and smooth muscle cells and induced endothelial cell-specific proliferation. Hydralazine dose-dependently inhibited PHD activity and induced nonhydroxylated HIF-1&agr;, evidence for HIF stabilization specifically by inhibition of PHD enzyme activity. In vivo, hydralazine induced HIF-1&agr; and VEGF protein in tissue extracts and elevated plasma VEGF levels. In sponge angiogenesis assays, hydralazine increased stromal cell infiltration and blood vessel density versus control animals. Thus, hydralazine activates the HIF pathway through inhibition of PHD activity and initiates a pro-angiogenic phenotype. This represents a novel mechanism of action for hydralazine and presents HIF as a potential target for treatment of ischemic disease.


Journal of Biological Chemistry | 2011

Differential Sensitivity of Hypoxia Inducible Factor Hydroxylation Sites to Hypoxia and Hydroxylase Inhibitors

Ya-Min Tian; Kar Kheng Yeoh; Myung Kyu Lee; Tuula Eriksson; Benedikt M. Kessler; Holger B. Kramer; Mariola J. Edelmann; Carsten Willam; Christopher W. Pugh; Christopher J. Schofield; Peter J. Ratcliffe

Hypoxia inducible factor (HIF) is regulated by dual pathways involving oxygen-dependent prolyl and asparaginyl hydroxylation of its α-subunits. Prolyl hydroxylation at two sites within a central degradation domain promotes association of HIF-α with the von Hippel-Lindau ubiquitin E3 ligase and destruction by the ubiquitin-proteasome pathways. Asparaginyl hydroxylation blocks the recruitment of p300/CBP co-activators to a C-terminal activation domain in HIF-α. These hydroxylations are catalyzed by members of the Fe(II) and 2-oxoglutarate (2-OG) oxygenase family. Activity of the enzymes is suppressed by hypoxia, increasing both the abundance and activity of the HIF transcriptional complex. We have used hydroxy residue-specific antibodies to compare and contrast the regulation of each site of prolyl hydroxylation (Pro402, Pro564) with that of asparaginyl hydroxylation (Asn803) in human HIF-1α. Our findings reveal striking differences in the sensitivity of these hydroxylations to hypoxia and to different inhibitor types of 2-OG oxygenases. Hydroxylation at the three sites in endogenous human HIF-1α proteins was suppressed by hypoxia in the order Pro402 > Pro564 > Asn803. In contrast to some predictions from in vitro studies, prolyl hydroxylation was substantially more sensitive than asparaginyl hydroxylation to inhibition by iron chelators and transition metal ions; studies of a range of different small molecule 2-OG analogues demonstrated the feasibility of selectively inhibiting either prolyl or asparaginyl hydroxylation within cells.


FEBS Letters | 2004

Determination and comparison of specific activity of the HIF-prolyl hydroxylases

Jason R. Tuckerman; Yuguang Zhao; Kirsty S. Hewitson; Ya-Min Tian; Christopher W. Pugh; Peter J. Ratcliffe; David R. Mole

Hypoxia‐inducible factor (HIF) is a transcriptional complex that is regulated by oxygen sensitive hydroxylation of its α subunits by the prolyl hydroxylases PHD1, 2 and 3. To better understand the role of these enzymes in directing cellular responses to hypoxia, we derived an assay to determine their specific activity in both native cell extracts and recombinant sources of enzyme. We show that all three are capable of high rates of catalysis, in the order PHD2=PHD3 > PHD1, using substrate peptides derived from the C‐terminal degradation domain of HIF‐α subunits, and that each demonstrates similar and remarkable sensitivity to oxygen, commensurate with a common role in signaling hypoxia.


Histopathology | 2005

Use of novel monoclonal antibodies to determine the expression and distribution of the hypoxia regulatory factors PHD-1, PHD-2, PHD-3 and FIH in normal and neoplastic human tissues

E J Soilleux; H Turley; Ya-Min Tian; Christopher W. Pugh; K C Gatter; Adrian L. Harris

Aims : The cellular response to hypoxia includes the hypoxia inducible factor (HIF)‐induced transcription of genes involved in diverse processes such as glycolysis, angiogenesis and the growth of experimental tumours. Regulation of the level of hypoxia inducible factors 1α and 2α (HIF‐1α and HIF‐2α) is a primary determinant of HIF activity. Recent biochemical and candidate gene approach studies have led to the discovery of three HIF‐regulatory prolyl hydroxylases, PHD‐1, ‐2 and ‐3 and an asparaginyl hydroxylase, also known as FIH (factor inhibiting HIF). In this study, we raised and characterized monoclonal antibodies against PHD‐1, PHD‐2, PHD‐3 and FIH.


EMBO Reports | 2012

The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity

Norma Masson; Rachelle S. Singleton; Rok Sekirnik; David C. Trudgian; Lucy J. A. Ambrose; Melroy X. Miranda; Ya-Min Tian; Benedikt M. Kessler; Christopher J. Schofield; Peter J. Ratcliffe

Hypoxic and oxidant stresses can coexist in biological systems, and oxidant stress has been proposed to activate hypoxia pathways through the inactivation of the ‘oxygen‐sensing’ hypoxia‐inducible factor (HIF) prolyl and asparaginyl hydroxylases. Here, we show that despite reduced sensitivity to cellular hypoxia, the HIF asparaginyl hydroxylase—known as FIH, factor inhibiting HIF—is strikingly more sensitive to peroxide than the HIF prolyl hydroxylases. These contrasting sensitivities indicate that oxidant stress is unlikely to signal hypoxia directly to the HIF system, but that hypoxia and oxidant stress can interact functionally as distinct regulators of HIF transcriptional output.


Angewandte Chemie | 2012

Dynamic Combinatorial Chemistry Employing Boronic Acids/Boronate Esters Leads to Potent Oxygenase Inhibitors

Marina Demetriades; Ivanhoe K. H. Leung; Rasheduzzaman Chowdhury; Mun Chiang Chan; Michael A. McDonough; Kar Kheng Yeoh; Ya-Min Tian; Timothy D. W. Claridge; Peter J. Ratcliffe; Esther C. Y. Woon; Christopher J. Schofield

The application of dynamic reactions is a promising approach for the discovery of small-molecule ligands for proteins. To date, however, this method is limited by the few appropriate reactions and the techniques used for the analysis of protein– ligand complexes. “Dynamic” functional group interconvertions that have been employed include the conversion of thiols to disulfides, the aldol reaction, and the addition of nucleophiles to ketones and aldehydes. The reaction of boronic acids with diols to form boronate esters is attractive for dynamic-library formation, because it is reversible in aqueous solution in a pH-dependent manner. The dynamic boronic acid/boronate ester system has been used to form supramolecular switches, some of which have been used for sugar detection. 5] However, this system has not been used for the identification of protein ligands. Proof of principle work with proteases, which react reversibly with boronic acids, suggests that boronic acid/boronate ester systems might be useful for the identification of enzyme inhibitors. One issue with the application of reversible reactions for ligand identification is the need to analyze labile complexes that are derived from mixtures. High-resolution techniques, such as NMR spectroscopy and X-ray crystallography, are applicable, but these are time-consuming. Our research group and that of Poulsen, have used non-denaturing protein mass spectrometry to identify protein–ligand complexes formed from equilibrating mixtures of thiols/disulfides and aldehydes/hydrazones. The dynamic-combinatorial mass spectrometry (DCMS) technique has the advantages of being efficient and providing information on mass shifts, which can be used for assigning structures to the ligands that bind preferentially. Herein we demonstrate that boronic acid/boronate ester dynamic systems coupled with protein mass spectrometry analysis are useful for the identification of protein inhibitors (Scheme 1). Our target model enzyme was prolyl hydroxylase domain isoform 2 (PHD2), which is a Fe and 2-oxoglutarate (2OG) oxygenase that regulates the human hypoxic response. PHD2 inhibition is of therapeutic interest for the treatment of anemia and ischemia-related diseases. DCMS experiments were carried out using “support ligands” 2 and 3 (Scheme 2), which were designed to participate in Fe chelation in the active site and, through the incorporation of a boronic acid moiety, participate in boronate ester exchange. We selected the 2-(picolinamido)acetic acid scaffold because, based on crystal structures of PHD2, it is predicted to fit into the active site through its chelation with Fe. The low potency of 2-(picolinamido)acetic acid (IC50> 1 mm) enabled the effect of boronate ester substitution to be monitored. Modeling studies suggested that whereas the boronic acid group in support ligand 2 would fit into the active-site subpocket, that of 3 would clash with the active-site wall. Hence, it was envisaged that the reactivity of 3 might serve as a control to investigate possible non-specific binding. The analysis of mixtures of 2 or 3 with PHD2·Fe through the use of non-denaturing ESI-MS led to the observation of a new peak at 27 887 Da (187 2 Da shift), corresponding to a small molecule/protein adduct, in which the OH groups of the boronic acids moiety are cleaved. We have previously observed, through the use of non-denaturing ESI-MS, analogous apparent fragmentation of boronic acids complexed with other enzymes. Notably, the mixture of boronate ester 4 and PHD2·Fe gave the same mass shift (187 2 Da) as that observed with 2 and 3 at a cone voltage of 80 V. However, when a lower cone voltage was used (30 V), the mass shift corresponding to an adduct of 4 with the protein, without fragmentation, was apparent (358 2 Da), demonstrating that boronate ester formation can be observed when sufficiently mild ionization is used. Both 2 and 3 compete with the 2OG analogue N-oxalylglycine (NOG) for the 2OG binding site of PHD2. To ensure that boronate ester formation involving 2 and 3 was favorable under the conditions used (NH4OAc [*] M. Demetriades, I. K. H. Leung, Dr. R. Chowdhury, M. C. Chan, Dr. M. A. McDonough, Dr. K. K. Yeoh, Dr. T. D. W. Claridge, Prof. C. J. Schofield Chemistry Research Laboratory, University of Oxford 12 Mansfield Road, Oxford, OX1 3TA (UK) E-mail: [email protected]

Collaboration


Dive into the Ya-Min Tian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge