Yael Bernstein
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yael Bernstein.
The EMBO Journal | 2002
Ditsa Levanon; David Bettoun; Catherine Harris-Cerruti; Eilon Woolf; Varda Negreanu; Raya Eilam; Yael Bernstein; Dalia Goldenberg; Cuiying Xiao; Manfred Fliegauf; E. Kremer; Florian Otto; Ori Brenner; Aharon Lev-Tov; Yoram Groner
The RUNX transcription factors are important regulators of linage‐specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show that Runx3‐deficient mice develop severe limb ataxia due to disruption of monosynaptic connectivity between intra spinal afferents and motoneurons. We demonstrate that the underlying cause of the defect is a loss of DRG proprioceptive neurons, reflected by a decreased number of TrkC‐, parvalbumin‐ and β‐galactosidase‐positive cells. Thus, Runx3 is a neurogenic TrkC neuron‐specific transcription factor. In its absence, TrkC neurons in the DRG do not survive long enough to extend their axons toward target cells, resulting in lack of connectivity and ataxia. The data provide new genetic insights into the neurogenesis of DRGs and may help elucidate the molecular mechanisms underlying somatosensory‐related ataxia in humans.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Eilon Woolf; Cuiying Xiao; Ofer Fainaru; Joseph Lotem; Dalia Rosen; Varda Negreanu; Yael Bernstein; Dalia Goldenberg; Ori Brenner; Gideon Berke; Ditsa Levanon; Yoram Groner
The RUNX transcription factors are important regulators of lineage-specific gene expression. RUNX are bifunctional, acting both as activators and repressors of tissue-specific target genes. Recently, we have demonstrated that Runx3 is a neurogenic transcription factor, which regulates development and survival of proprioceptive neurons in dorsal root ganglia. Here we report that Runx3 and Runx1 are highly expressed in thymic medulla and cortex, respectively, and function in development of CD8 T cells during thymopoiesis. Runx3-deficient (Runx3 KO) mice display abnormalities in CD4 expression during lineage decisions and impairment of CD8 T cell maturation in the thymus. A large proportion of Runx3 KO peripheral CD8 T cells also expressed CD4, and in contrast to wild-type, their proliferation ability was largely reduced. In addition, the in vitro cytotoxic activity of alloimmunized peritoneal exudate lymphocytes was significantly lower in Runx3 KO compared with WT mice. In a compound mutant mouse, null for Runx3 and heterozygous for Runx1 (Runx3-/-;Runx1+/-), all peripheral CD8 T cells also expressed CD4, resulting in a complete lack of single-positive CD8+ T cells in the spleen. The results provide information on the role of Runx3 and Runx1 in thymopoiesis and suggest that both act as transcriptional repressors of CD4 expression during T cell lineage decisions.
The EMBO Journal | 1986
O Elroy-Stein; Yael Bernstein; Yoram Groner
The ‘housekeeping’ enzyme Cu/Zn‐superoxide dismutase (SOD‐1) is encoded by a gene residing on human chromosome 21, at the region 21q22 known to be involved in Downs syndrome. The SOD‐1 gene and the SOD‐1 cDNA were introduced into mouse L‐cells and human HeLa cells, respectively as part of recombinant plasmids containing the neoR selectable marker. Human and mouse transformants were obtained that expressed elevated levels (up to 6‐fold) of authentic, enzymatically active human SOD‐1. This enabled us to examine the consequences of hSOD‐1 gene dosage, apart from gene dosage effects contributed by other genes residing on chromosome 21. Human and mouse cell clones that overproduce the hSOD‐1 had altered properties; they were more resistant to paraquat than the parental cells and showed an increase in lipid peroxidation. The data are consistent with the possibility that gene dosage of hSOD‐1 contributes to some of the clinical symptoms associated with Downs syndrome.
The EMBO Journal | 2004
Ofer Fainaru; Eilon Woolf; Joseph Lotem; Merav Yarmus; Ori Brenner; Dalia Goldenberg; Varda Negreanu; Yael Bernstein; Ditsa Levanon; Steffen Jung; Yoram Groner
Runx3 transcription factor regulates cell lineage decisions in thymopoiesis and neurogenesis. Here we report that Runx3 knockout (KO) mice develop spontaneous eosinophilic lung inflammation associated with airway remodeling and mucus hypersecretion. Runx3 is specifically expressed in mature dendritic cells (DC) and mediates their response to TGF‐β. In the absence of Runx3, DC become insensitive to TGF‐β‐induced maturation inhibition, and TGF‐β‐dependent Langerhans cell development is impaired. Maturation of Runx3 KO DC is accelerated and accompanied by increased efficacy to stimulate T cells and aberrant expression of β2‐integrins. Lung alveoli of Runx3 KO mice accumulate DC characteristic of allergic airway inflammation. Taken together, abnormalities in DC function and subset distribution may constitute the primary immune system defect, which leads to the eosinophilic lung inflammation in Runx3 KO mice. These data may help elucidate the molecular mechanisms underlying the pathogenesis of allergic airway inflammation in humans.
The EMBO Journal | 1985
Ditsa Levanon; Lieman-Hurwitz J; Dafni N; Wigderson M; Sherman L; Yael Bernstein; Laver-Rudich Z; Danciger E; Stein O; Yoram Groner
The SOD‐1 gene on chromosome 21 and approximately 100 kb of chromosomal DNA from the 21q22 region have been isolated and characterized. The gene which is present as a single copy per haploid genome spans 11 kb of chromosomal DNA. Heteroduplex analysis and DNA sequencing reveals five rather small exons and four introns that interrupt the coding region. The donor sequence at the first intron contains an unusual variant dinucleotide 5′‐G‐C, rather than the highly conserved 5′‐GT. The unusual splice junction is functional in vivo since it was detected in both alleles of the SOD‐1 gene, which were defined by differences in the length of restriction endonuclease fragments (RFLPs) that hybridize to the cDNA probe. Genomic blots of human DNA isolated from cells trisomic for chromosome 21 (Downs syndrome patients) show the normal pattern of bands. At the 5′ end of gene there are the ‘TATA’ and ‘CAT’ promoter sequences as well as four copies of the ‐GGCGGG‐ hexanucleotide. Two of these ‐GC‐ elements are contained within a 13 nucleotide inverted repeat that could form a stem‐loop structure with stability of ‐33 kcal. The 3′‐non coding region of the gene contains five short open reading‐frames starting with ATG and terminating with stop codons.
Gene | 2001
Carmen Bangsow; Nir Rubins; Gustavo Glusman; Yael Bernstein; Varda Negreanu; Dalia Goldenberg; Joseph Lotem; Edna Ben-Asher; Doron Lancet; Ditsa Levanon; Yoram Groner
The RUNX3 gene belongs to the runt domain family of transcription factors that act as master regulators of gene expression in major developmental pathways. In mammals the family includes three genes, RUNX1, RUNX2 and RUNX3. Here, we describe a comparative analysis of the human chromosome 1p36.1 encoded RUNX3 and mouse chromosome 4 encoded Runx3 genomic regions. The analysis revealed high similarities between the two genes in the overall size and organization and showed that RUNX3/Runx3 is the smallest in the family, but nevertheless exhibits all the structural elements characterizing the RUNX family. It also revealed that RUNX3/Runx3 bears a high content of the ancient mammalian repeat MIR. Together, these data delineate RUNX3/Runx3 as the evolutionary founder of the mammalian RUNX family. Detailed sequence analysis placed the two genes at a GC-rich H3 isochore with a sharp transition of GC content between the gene sequence and the downstream intergenic region. Two large conserved CpG islands were found within both genes, one around exon 2 and the other at the beginning of exon 6. RUNX1, RUNX2 and RUNX3 gene products bind to the same DNA motif, hence their temporal and spatial expression during development should be tightly regulated. Structure/function analysis showed that two promoter regions, designated P1 and P2, regulate RUNX3 expression in a cell type-specific manner. Transfection experiments demonstrated that both promoters were highly active in the GM1500 B-cell line, which endogenously expresses RUNX3, but were inactive in the K562 myeloid cell line, which does not express RUNX3.
Embo Molecular Medicine | 2011
Ditsa Levanon; Yael Bernstein; Varda Negreanu; Karen Rae Bone; Amir Pozner; Raya Eilam; Joseph Lotem; Ori Brenner; Yoram Groner
The Runx3 transcription factor regulates cell fate decisions during embryonic development and in adults. It was previously reported that Runx3 is strongly expressed in embryonic and adult gastrointestinal tract (GIT) epithelium (Ep) and that its loss causes gastric cancer. More than 280 publications have based their research on these findings and concluded that Runx3 is indeed a tumour suppressor (TS). In stark contrast, using various measures, we found that Runx3 expression is undetectable in GIT Ep. Employing a variety of biochemical and genetic techniques, including analysis of Runx3‐GFP and R26LacZ/Runx3Cre or R26tdTomato/Runx3Cre reporter strains, we readily detected Runx3 in GIT‐embedded leukocytes, dorsal root ganglia, skeletal elements and hair follicles. However, none of these approaches revealed detectable Runx3 levels in GIT Ep. Moreover, our analysis of the original Runx3LacZ/LacZ mice used in the previously reported study failed to reproduce the GIT expression of Runx3. The lack of evidence for Runx3 expression in normal GIT Ep creates a serious challenge to the published data and undermines the notion that Runx3 is a TS involved in cancer pathogenesis.
Blood Cells Molecules and Diseases | 2003
Ditsa Levanon; Gustavo Glusman; David Bettoun; Edna Ben-Asher; Varda Negreanu; Yael Bernstein; Catherine Harris-Cerruti; Ori Brenner; Raya Eilam; Joseph Lotem; Ofer Fainaru; Dalia Goldenberg; Amir Pozner; Eilon Woolf; Cuiying Xiao; Merav Yarmus; Yoram Groner
The RUNX transcription factors are key regulators of lineage specific gene expression in developmental pathways. The mammalian RUNX genes arose early in evolution and maintained extensive structural similarities. Sequence analysis suggested that RUNX3 is the most ancient of the three mammalian genes, consistent with its role in neurogenesis of the monosynaptic reflex arc, the simplest neuronal response circuit, found in Cnidarians, the most primitive animals. All RUNX proteins bind to the same DNA motif and act as activators or repressors of transcription through recruitment of common transcriptional modulators. Nevertheless, analysis of Runx1 and Runx3 expression during embryogenesis revealed that their function is not redundant. In adults both Runx1 and Runx3 are highly expressed in the hematopoietic system. At early embryonic stages we found strong Runx3 expression in dorsal root ganglia neurons, confined to TrkC sensory neurons. In the absence of Runx3, knockout mice develop severe ataxia due to the early death of the TrkC neurons. Other phenotypic defects of Runx3 KO mice including abnormalities in thymopoiesis are also being investigated.
Genomics | 1995
Karen B. Avraham; Ditsa Levanon; Varda Negreanu; Yael Bernstein; Yoram Groner; Neal G. Copeland; Nancy A. Jenkins
AML2 is a runt domain belonging to a group of transcription factors that appear to play a role in Drosophila embryogenesis and mammalian oncogenic transformation. AML2 maps to human chromosome 1p36, a region involved in the t(1;3)(p36;q21) translocation found in association with myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and acute nonlymphocytic leukemia. 9 refs., 1 fig.
Somatic Cell and Molecular Genetics | 1992
Ari Elson; Yael Bernstein; Hadassa Degani; Ditsa Levanon; Herzl Ben-Hur; Yoram Groner
Downs syndrome (DS) is a human genetic disease caused by triplication of the distal third of chromosome 21 and overexpression of an unknown number of genes residing in it. The gene for the liver-type subunit of phosphofructokinase (PFKL), a key glycolytic enzyme, maps to this region and the product is overproduced in DS erythrocytes and fibroblasts. These facts, together with abnormalities which occur in DS glycolysis, make PFKL overexpression a candidate for causing some aspects of the DS phenotype. A cellular model for examining the consequences of PFKL overexpression in DS was constructed by transfecting rat PC12 cells with the human PFKL cDNA. Phosphofructokinase (PFK) isolated from PFKL-overexpressing clones was more inhibited by ATP and citrate and less activated by fructose-6-phosphate than control PFK; similar results were obtained when PFK preparations from DS and control fibroblasts were compared. In vivo NMR measurements determined that cells overexpressing PFKL performed glycolysis 40% faster than controls. These results show that overexpression of PFKL is the cause for altered biochemical regulatory characteristics of PFK in DS fibroblasts and can result in enhancement of glycolysis rates. It is also shown that increased gene dosage can exert its influence not merely by enhancing the amounts of gene products but also by altering their biochemical nature.