Yair Kaufman
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yair Kaufman.
Langmuir | 2010
Yair Kaufman; Amir Berman; Viatcheslav Freger
Some biological plasma membranes pass water with a permeability and selectivity largely exceeding those of commercial membranes for water desalination using specialized trans-membrane proteins aquaporins. However, highly selective transport of water through aquaporins is usually driven by an osmotic rather mechanical pressure, which is not as attractive from the engineering point of view. The feasibility of adopting biomimetic membranes for water purification driven by a mechanical pressure, i.e., filtration is explored in this paper. Toward this goal, it is proposed to use a commercial nanofiltration (NF) membrane as a support for biomimetic lipid bilayer membranes to render them robust enough to withstand the required pressures. It is shown in this paper for the first time that by properly tuning molecular interactions supported phospholipid bilayers (SPB) can be prepared on a commercial NF membrane. The presence of SPB on the surface was verified and quantified by several spectroscopic and microscopic techniques, which showed morphology close to the desired one with very few defects. As an ultimate test it is shown that hydraulic permeability of the SPB supported on the NF membrane (NTR-7450) approaches the values deduced from the typical osmotic permeabilities of intact continuous bilayers. This permeability was unaffected by the trans-membrane flow of water and by repeatedly releasing and reapplying a 10 bar pressure. Along with a parallel demonstration that aquaporins could be incorporated in a similar bilayer on mica, this demonstrates the feasibility of the proposed approach. The prepared SPB structure may be used as a platform for preparing biomimetic filtration membranes with superior performance based on aquaporins. The concept of SPBs on permeable substrates of the present type may also be useful in the future for studying transport of various molecules through trans-membrane proteins.
Nature Communications | 2015
B. Kollbe Ahn; Saurabh Das; Roscoe T. H. Linstadt; Yair Kaufman; Nadine R. Martinez-Rodriguez; Razieh Mirshafian; Ellina Kesselman; Yeshayahu Talmon; Bruce H. Lipshutz; Jacob N. Israelachvili; J. Herbert Waite
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.
Biomacromolecules | 2011
Moshe Herzberg; Amer Sweity; Matan Brami; Yair Kaufman; Viatcheslav Freger; Gideon Oron; Sophia Belfer; Roni Kasher
Microbial biofilms and their components present a major obstacle for ensuring the long-term effectiveness of membrane processes. Graft polymerization on membrane surfaces, in general, and grafting with oppositely charged monomers, have been shown to reduce biofouling significantly. In this study, surface forces and macromolecular properties of graft copolymers that possess oppositely charged groups were related to their potent antibiofouling behavior. Graft polymerization was performed using the negatively charged 3-sulphopropyl methacrylate (SPM) and positively charged [2-(methacryloyloxy)ethyl]-trimethylammonium (MOETMA) monomers to yield a copolymer layer on polyvinylidene fluoride (PVDF) surface. Quartz crystal microbalance with dissipation monitoring (QCM-D) technology was used to monitor the reduced adsorption of extracellular polymeric substances (EPS) extracted from a membrane bioreactor (MBR) wastewater treatment facility. Complemented measurements of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy provided evaluation of the antifouling properties of the surface. Increase in water content in grafted layer exposed to 100 mM aqueous NaCl solution was observed by QCM-D. Therefore, the grafted copolymer layer is swelled in the presence of 100 mM NaCl because of reversing of polymer self-association by counterions. Force measurements by atomic force microscopy (AFM) showed an increased repulsion between a carboxylate-modified latex (CML) particle probe and a modified PVDF surface, especially in the presence of 100 mM NaCl. The hydration and swelling of the grafted polymer layer are shown to repel EPS and reduce their adsorption. Delineating the surface properties of antifouling grafted layers may lead to the design of novel antifouling surfaces.
Biofouling | 2015
Nadine R. Martinez Rodriguez; Saurabh Das; Yair Kaufman; Jacob N. Israelachvili; J. Herbert Waite
Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2 to 3.3, which is well below the seawater pH of ~ 8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7–8.
Journal of Physical Chemistry B | 2010
Sarit Bason; Yair Kaufman; Viatcheslav Freger
The analysis of salt transport in nanofiltration using extended Nernst-Planck equations or similar models often suffers from the difficulties to establish and independently and transparently verify the consistency between the filtration results, assumed mechanism, and fitted values of parameters. As a general alternative, we propose here a procedure that reduces filtration data to two general phenomenological coefficients, concentration-dependent salt permeability omega(s) and Peclet coefficient A, which does not require that a specific exclusion mechanism be assumed and thus allows a transparent test on consistency with commonly used models. This approach was demonstrated using concentration polarization-corrected filtration data for NF-200 membrane and four monovalent salts, NaCl, NaBr, KBr, and KCl. The coefficient A was found to be very small, which points to the negligible contribution of convection to salt transport. The smallness of A was verified through estimates of the effective pore radius of the membrane, found to be between 0.2 and 0.3 nm, and comparing them with similar independent estimates from the hydraulic permeability L(p) using the data on the thickness and swelling of the selective polyamide layer obtained by AFM. The concentration dependence of omega(s) and its variation for different salts suggested that in the concentration range above 0.01 M the salt exclusion may be dominated by a combination of Donnan and dielectric mechanisms. The values of omega(s) obtained for single salts were also consistent with the selectivity observed for equimolar feed mixtures of NaCl and NaBr. However, the observed variation of omega(s) with concentrations of single salts below 0.01 M reveals a new regime that is inconsistent with all commonly used models of NF based on a Donnan mechanism modified with dielectric and steric effects. In particular, omega(s) appeared to approach a constant value at low salt concentrations, whereas the standard mechanisms predict a linear or even steeper decrease as concentration decreases. This puzzling discrepancy could have passed unnoticed in the standard multiparameter fitting extended Nernst-Planck equations and demonstrates the benefits of the present phenomenological analysis.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Dong Woog Lee; Xavier Banquy; Kai Kristiansen; Yair Kaufman; Joan M. Boggs; Jacob N. Israelachvili
Significance The proper functioning of multilayer membrane systems, such as myelin, requires the multilamellar membranes to be tightly wrapped around the axon fibers, thereby allowing efficient electric signal transmission. Slight changes in lipid composition in myelin membranes will alter their domain sizes and distributions, and the intermembrane adhesive properties. Using the surface forces apparatus and atomic force microscope, we studied the adsorption of myelin basic protein (MBP) to model myelin lipid bilayer membranes of varying compositions, and their effects on the structure, equilibrium spacing (swelling), and adhesion force between them. We find that MBP preferentially adsorbs to “disordered” submicron domains, affecting regular spacing and adhesion. These findings provide insights into lipid–protein interactions and membrane-associated (e.g., demyelinating) diseases. The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from “normal” (healthy) and “disease-like” [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3–4 nm) with strong intermembrane adhesion (∼0.36 mJ/m2), in contrast to its formation of thicker (7–8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m2) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane–protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.
Biomaterials | 2015
Nadine R. Martinez Rodriguez; Saurabh Das; Yair Kaufman; Wei Wei; Jacob N. Israelachvili; J. Herbert Waite
Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant load-bearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and surface forces apparatus (SFA). Both hydrophilic and hydrophobic variants of mfp-3 were exploited to probe the nature of the interaction between the protein and collagen. Our chief findings are: 1) mfp-3 is an effective chaperone for tropocollagen adsorption to TiO2 and mica surfaces; 2) at pH 3, collagen addition between two mfp-3 films (Wc = 5.4 ± 0.2 mJ/m(2)) increased their cohesion by nearly 35%; 3) oxidation of Dopa in mfp-3 by periodate did not abolish the adhesion between collagen and mfp-3 films, and 4) collagen bridging between both hydrophilic and hydrophobic mfp-3 variant films is equally robust, suggesting that hydrophobic interactions play a minor role. Extensive H-bonding, π-cation and electrostatic interactions are more plausible to explain the reversible bridging of mfp-3 films by collagen.
Journal of the Royal Society Interface | 2015
Saurabh Das; Nicholas Cadirov; Sathya Chary; Yair Kaufman; Jack Hogan; Kimberly L. Turner; Jacob N. Israelachvili
The discovery and understanding of gecko ‘frictional-adhesion’ adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick–slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick–slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick–slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems.
Biomacromolecules | 2015
Saurabh Das; Dusty R. Miller; Yair Kaufman; Nadine R. Martinez Rodriguez; Alessia Pallaoro; Matthew J. Harrington; Maryte Gylys; Jacob N. Israelachvili; J. Herbert Waite
Mussel foot protein-1 (mfp-1) is an essential constituent of the protective cuticle covering all exposed portions of the byssus (plaque and the thread) that marine mussels use to attach to intertidal rocks. The reversible complexation of Fe(3+) by the 3,4-dihydroxyphenylalanine (Dopa) side chains in mfp-1 in Mytilus californianus cuticle is responsible for its high extensibility (120%) as well as its stiffness (2 GPa) due to the formation of sacrificial bonds that help to dissipate energy and avoid accumulation of stresses in the material. We have investigated the interactions between Fe(3+) and mfp-1 from two mussel species, M. californianus (Mc) and M. edulis (Me), using both surface sensitive and solution phase techniques. Our results show that although mfp-1 homologues from both species bind Fe(3+), mfp-1 (Mc) contains Dopa with two distinct Fe(3+)-binding tendencies and prefers to form intramolecular complexes with Fe(3+). In contrast, mfp-1 (Me) is better adapted to intermolecular Fe(3+) binding by Dopa. Addition of Fe(3+) did not significantly increase the cohesion energy between the mfp-1 (Mc) films at pH 5.5. However, iron appears to stabilize the cohesive bridging of mfp-1 (Mc) films at the physiologically relevant pH of 7.5, where most other mfps lose their ability to adhere reversibly. Understanding the molecular mechanisms underpinning the capacity of M. californianus cuticle to withstand twice the strain of M. edulis cuticle is important for engineering of tunable strain tolerant composite coatings for biomedical applications.
Biomacromolecules | 2014
Jenia Gutman; Yair Kaufman; Kazuyoshi Kawahara; Sharon L. Walker; Viatcheslav Freger; Moshe Herzberg
Bacterial outer membrane components play a critical role in bacteria-surface interactions (adhesion and repulsion). Sphingomonas species (spp.) differ from other Gram-negative bacteria in that they lack lipopolysaccharides (LPSs) in their outer membrane. Instead, Sphingomonas spp. outer membrane consists of glycosphingolipids (GSLs). To delineate the properties of the outer membrane of Sphingomonas spp. and to explain the adhesion of these cells to surfaces, we employed a single-component-based approach of comparing GSL vesicles to LPS vesicles. This is the first study to report the formation of vesicles containing 100% GSL. Significant physicochemical differences between GSL and LPS vesicles are reported. Composition-dependent vesicle adherence to different surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) technology was observed, where higher GSL content resulted in higher mass accumulation on the sensor. Additionally, the presence of 10% GSL and above was found to promote the relative rigidity of the vesicle obtaining viscoelastic ratio of 30-70% higher than that of pure LPS vesicles.