Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaisa Andrews-Zwilling is active.

Publication


Featured researches published by Yaisa Andrews-Zwilling.


Cell | 2011

Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration.

Daniel Zwilling; Shao-Yi Huang; Korrapati V. Sathyasaikumar; Francesca M. Notarangelo; Paolo Guidetti; Hui-Qiu Wu; Jason Lee; Jennifer Truong; Yaisa Andrews-Zwilling; Eric W. Hsieh; Jamie Y. Louie; Tiffany Wu; Kimberly Scearce-Levie; Christina Patrick; Anthony Adame; Flaviano Giorgini; Saliha Moussaoui; Grit Laue; Arash Rassoulpour; Gunnar Flik; Yadong Huang; Joseph M. Muchowski; Eliezer Masliah; Robert Schwarcz; Paul J. Muchowski

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimers and Huntingtons diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimers disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntingtons disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


The Journal of Neuroscience | 2010

Apolipoprotein E4 Causes Age- and Tau-Dependent Impairment of GABAergic Interneurons, Leading to Learning and Memory Deficits in Mice

Yaisa Andrews-Zwilling; Nga Bien-Ly; Qin Xu; Gang Li; Aubrey Bernardo; Seo Yeon Yoon; Daniel Zwilling; Tonya Xue Yan; Ligong Chen; Yadong Huang

Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimers disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABAA receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABAA receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimers disease.


Cell Stem Cell | 2009

GABAergic Interneuron Dysfunction Impairs Hippocampal Neurogenesis in Adult Apolipoprotein E4 Knockin Mice

Gang Li; Nga Bien-Ly; Yaisa Andrews-Zwilling; Qin Xu; Aubrey Bernardo; Karen Ring; Brian Halabisky; Changhui Deng; Robert W. Mahley; Yadong Huang

Apolipoprotein (apo) E, a polymorphic protein with three isoforms (apoE2, apoE3, and apoE4), is essential for lipid homeostasis. Carriers of apoE4 are at higher risk for developing Alzheimers disease. We have investigated adult neurogenesis in mice with knockout (KO) for apoE or with knockin (KI) alleles for human apoE3 or apoE4, and we report that neurogenesis is reduced in both apoE-KO and apoE4-KI mice. In apoE-KO mice, increased BMP signaling promoted glial differentiation at the expense of neurogenesis. In contrast, in apoE4-KI mice, presynaptic GABAergic input-mediated maturation of newborn neurons was diminished. Tau phosphorylation, an Alzheimers disease characteristic, and levels of neurotoxic apoE fragments were both elevated in apoE4-KI hippocampal neurons concomitant with decreased GABAergic interneuron survival. Potentiating GABAergic signaling restored neuronal maturation and neurogenesis in apoE4-KI mice to normal levels. These findings suggest that GABAergic signaling can be targeted to mitigate the deleterious effects of apoE4 on neurogenesis.


PLOS ONE | 2012

Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval

Yaisa Andrews-Zwilling; Anna K. Gillespie; Alexxai V. Kravitz; Alexandra B. Nelson; Nino Devidze; Iris Lo; Seo Yeon Yoon; Nga Bien-Ly; Karen Ring; Daniel Zwilling; Gregory B. Potter; John L.R. Rubenstein; Anatol C. Kreitzer; Yadong Huang

Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimers disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.


Proceedings of the National Academy of Sciences of the United States of America | 2011

C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-β (Aβ) and acts in concert with Aβ to elicit neuronal and behavioral deficits in mice

Nga Bien-Ly; Yaisa Andrews-Zwilling; Qin Xu; Aubrey Bernardo; Charles Wang; Yadong Huang

Apolipoprotein (apo) E4 is the major known genetic risk factor for Alzheimers disease (AD). We have shown in vitro and in vivo that apoE4 preferentially undergoes aberrant cleavage in neurons, yielding neurotoxic C-terminal-truncated fragments. To study the effect of these fragments on amyloid-β (Aβ) clearance/deposition and their potential synergy with Aβ in eliciting neuronal and behavioral deficits, we cross-bred transgenic mice expressing apoE3, apoE4, or apoE4(Δ272–299) with mice expressing human amyloid protein precursor (APP) harboring familial AD mutations (hAPPFAD). At 6–8 mo of age, hAPPFAD mice expressing apoE3 or apoE4 had lower levels of hippocampal Aβ (94% and 89%, respectively) and less Aβ deposition (89% and 87%) than hAPPFAD mice without apoE, whereas hAPPFAD mice expressing mouse apoE had higher Aβ levels. Thus, human apoE stimulates Aβ clearance, but mouse apoE does not. Expression of apoE4(Δ272–299) reduced total Aβ levels by only 63% and Aβ deposition by 46% compared with hAPPFAD mice without apoE. Unlike apoE3 and apoE4, the C-terminal-truncated apoE4 bound poorly with Aβ peptides, leading to decreased Aβ clearance and increased Aβ deposition. Despite their lower levels of Aβ and Aβ deposition, hAPPFAD/apoE4(Δ272–299) mice accumulated pathogenic Aβ oligomers and displayed neuronal and behavioral deficits similar to or more severe than those in hAPPFAD mice. Thus, the C-terminal-truncated apoE4 fragment inefficiently clears Aβ peptides and acts in concert with low levels of Aβ to elicit neuronal and behavioral deficits in mice.


PLOS ONE | 2012

Apolipoprotein E4 Causes Age- and Sex-Dependent Impairments of Hilar GABAergic Interneurons and Learning and Memory Deficits in Mice

Laura Leung; Yaisa Andrews-Zwilling; Seo Yeon Yoon; Sachi Jain; Karen Ring; Jessica Dai; Max Mu Wang; Leslie M. Tong; David Walker; Yadong Huang

Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimers disease (AD). ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in female mice, leading to learning and memory deficits. Here, we investigate whether the detrimental effects of apoE4 on hilar GABAergic interneurons are sex-dependent using apoE knock-in (KI) mice across different ages. We found that in female apoE-KI mice, there was an age-dependent depletion of hilar GABAergic interneurons, whereby GAD67- or somatostatin-positive–but not NPY- or parvalbumin-positive–interneuron loss was exacerbated by apoE4. Loss of these neuronal populations was correlated with the severity of spatial learning deficits at 16 months of age in female apoE4-KI mice; however, this effect was not observed in female apoE3-KI mice. In contrast, we found an increase in the numbers of hilar GABAergic interneurons with advancing age in male apoE-KI mice, regardless of apoE genotype. Moreover, male apoE-KI mice showed a consistent ratio of hilar inhibitory GABAergic interneurons to excitatory mossy cells approximating 1.5 that is independent of apoE genotype and age, whereas female apoE-KI mice exhibited an age-dependent decrease in this ratio, which was exacerbated by apoE4. Interestingly, there are no apoE genotype effects on GABAergic interneurons in the CA1 and CA3 subregions of the hippocampus as well as the entorhinal and auditory cortexes. These findings suggest that the sex-dependent effects of apoE4 on developing AD is in part attributable to inherent sex-based differences in the numbers of hilar GABAergic interneurons, which is further modulated by apoE genotype.


The Journal of Neuroscience | 2016

Enhancing GABA Signaling during Middle Adulthood Prevents Age-Dependent GABAergic Interneuron Decline and Learning and Memory Deficits in ApoE4 Mice

Leslie M. Tong; Seo Yeon Yoon; Yaisa Andrews-Zwilling; Yang A; Lin; Lei H; Yadong Huang

Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimers disease (AD). However, the underlying mechanisms are still poorly understood. We previously reported that female apoE4 knock-in (KI) mice had an age-dependent decline in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined by Morris water maze (MWM), in aged mice. Enhancing GABA signaling by treating aged apoE4-KI mice with the GABAA receptor potentiator pentobarbital (PB) for 4 weeks before and during MWM rescued the learning and memory deficits. Here, we report that withdrawal of PB treatment for 2 weeks before MWM abolished the rescue in aged apoE4-KI mice, suggesting the importance of continuously enhancing GABA signaling in the rescue. However, treating apoE4-KI mice during middle adulthood (9–11 months of age) with PB for 6 weeks prevented age-dependent hilar GABAergic interneuron decline and learning and memory deficits, when examined at 16 month of age. These data imply that increasing inhibitory tone after substantial GABAergic interneuron loss may be an effective symptomatic, but not a disease-modifying, treatment for AD related to apoE4, whereas a similar intervention before substantial interneuron loss could be a disease-modifying therapeutic. SIGNIFICANCE STATEMENT We previously reported that female apoE4-KI mice had an age-dependent decline in hilar GABAergic interneurons that correlated with the extent of cognitive deficits in aged mice. The current study demonstrates that enhancing GABA signaling by treating aged apoE4-KI mice with a GABAA receptor potentiator pentobarbital (PB) before and during behavioral tests rescued the cognitive deficits; but withdrawal of PB treatment for 2 weeks before the tests abolished the rescue, suggesting the importance of continuously enhancing GABA signaling. However, treating apoE4-KI mice during middle adulthood with PB for a short period of time prevented age-dependent hilar GABAergic interneuron decline and cognitive deficits late in life, suggesting early intervention by enhancing GABA signaling as a potential strategy to prevent AD related to apoE4.


Alzheimers & Dementia | 2010

Apolipoprotein E4 causes tau-dependent hilar GABAergic interneuron impairment, leading to learning and memory deficits in mice

Yaisa Andrews-Zwilling; Nga Bien-Ly; Qin Xu; Gang Li; Aubrey Bernardo; Seo Yeon Yoon; Daniel Zwilling; Tonya Xue Yan; Ligong Chen; Yadong Huang

O4-02-02 APOLIPOPROTEIN E4 CAUSES TAU-DEPENDENT HILAR GABAERGIC INTERNEURON IMPAIRMENT, LEADING TO LEARNING AND MEMORY DEFICITS IN MICE Yaisa S. Andrews-Zwilling, Nga Bien-ly, Qin Xu, Gang Li, Aubrey Bernardo, Seo Yeon Yoon, Daniel Zwilling, Tonya Xue Yan, Ligong Chen, Yadong Huang, Gladstone Institute of Neurological Disease, San Francisco, CA, USA; UCSF, San Francisco, CA, USA. Contact e-mail: [email protected]


Cell Stem Cell | 2012

Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor

Karen Ring; Leslie M. Tong; Maureen E. Balestra; Robyn Javier; Yaisa Andrews-Zwilling; Gang Li; David Walker; William Zhang; Anatol C. Kreitzer; Yadong Huang


PLOS ONE | 2013

Inhibition of hilar GABAergic interneuron activity impaired spatial memory retrieval but not memory retention.

Yaisa Andrews-Zwilling; Anna K. Gillespie; Alexxai V. Kravitz; Alexandra B. Nelson; Nino Devidze; Iris Lo; Seo Yeon Yoon; Nga Bien-Ly; Karen Ring; Daniel Zwilling; Gregory B. Potter; John L.R. Rubenstein; Anatol C. Kreitzer; Yadong Huang

Collaboration


Dive into the Yaisa Andrews-Zwilling's collaboration.

Top Co-Authors

Avatar

Yadong Huang

University of California

View shared research outputs
Top Co-Authors

Avatar

Nga Bien-Ly

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Ring

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qin Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge