Yajie Dong
University of Central Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yajie Dong.
Nature Materials | 2008
Fang Qian; Yat Li; Silvija Gradečak; Hong Gyu Park; Yajie Dong; Yong Ding; Zhong Lin Wang; Charles M. Lieber
Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions. For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors and low-temperature quantum devices compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have an unusually high thermoelectric figure of merit. Here, we report the first multi-quantum-well (MQW) core/shell nanowire heterostructures based on well-defined III-nitride materials that enable lasing over a broad range of wavelengths at room temperature. Transmission electron microscopy studies show that the triangular GaN nanowire cores enable epitaxial and dislocation-free growth of highly uniform (InGaN/GaN)n quantum wells with n=3, 13 and 26 and InGaN well thicknesses of 1-3 nm. Optical excitation of individual MQW nanowire structures yielded lasing with InGaN quantum-well composition-dependent emission from 365 to 494 nm, and threshold dependent on quantum well number, n. Our work demonstrates a new level of complexity in nanowire structures, which potentially can yield free-standing injection nanolasers.
Nano Letters | 2009
Yajie Dong; Bozhi Tian; Thomas J. Kempa; Charles M. Lieber
Coaxial core/shell nanowires represent an important class of nanoscale building blocks with substantial potential for exploring new concepts and materials for solar energy conversion. Here, we report the first experimental realization of coaxial group III-nitride nanowire photovoltaic (PV) devices, n-GaN/i-In(x)Ga(1-x)N/p-GaN, where variation of indium mole fraction is used to control the active layer band gap and hence light absorption. Current-voltage data reveal clear diode characteristics with ideality factors from 3.9 to 5.6. Electroluminescence measurements demonstrate tunable emission from 556 to 371 nm and thus confirm band gap variations in the In(x)Ga(1-x)N active layer from 2.25 to 3.34 eV as In composition is varied. Simulated one-sun AM 1.5G illumination yielded open-circuit voltages (V(oc)) from 1.0 to 2.0 V and short-circuit current densities (J(sc)) from 0.39 to 0.059 mA/cm(2) as In composition is decreased from 0.27 to 0 and a maximum efficiency of approximately 0.19%. The n-GaN/i-In(x)Ga(1-x)N/p-GaN nanowire devices are highly robust and exhibit enhanced efficiencies for concentrated solar light illuminations as well as single nanowire J(sc) values as high as 390 mA/cm(2) under intense short-wavelength illumination. The ability to rationally tune the structure and composition of these core/shell III-nitride nanowires will make them a powerful platform for exploring nanoenabled PVs in the future.
Nano Letters | 2008
Yajie Dong; Guihua Yu; Michael C. McAlpine; Wei Lu; Charles M. Lieber
Radial core/shell nanowires (NWs) represent an important class of nanoscale building blocks with substantial potential for exploring fundamental electronic properties and realizing novel device applications at the nanoscale. Here, we report the synthesis of crystalline silicon/amorphous silicon (Si/a-Si) core/shell NWs and studies of crossed Si/a-Si NW metal NW (Si/a-Si x M) devices and arrays. Room-temperature electrical measurements on single Si/a-Si x Ag NW devices exhibit bistable switching between high (off) and low (on) resistance states with well-defined switching threshold voltages, on/off ratios greater than 10(4), and current rectification in the on state. Temperature-dependent switching experiments suggest that rectification can be attributed to barriers to electric field-driven metal diffusion. Systematic studies of Si/a-Si x Ag NW devices show that (i) the bit size can be at least as small as 20 nm x 20 nm, (ii) the writing time is <100 ns, (iii) the retention time is >2 weeks, and (iv) devices can be switched >10(4) times without degradation in performance. In addition, studies of dense one-dimensional and two-dimensional Si/a-Si x Ag NW devices arrays fabricated on crystalline and plastic substrates show that elements within the arrays can be independently switched and read, and moreover that bends with radii of curvature as small as 0.3 cm cause little change in device characteristics. The Si/a-Si x Ag NW devices represent a highly scalable and promising nanodevice element for assembly and fabrication of dense nonvolatile memory and programmable nanoprocessors.
Nano Letters | 2010
Liqiang Mai; Yajie Dong; Lin Xu; Chunhua Han
We report the single nanowire electrode devices designed as a unique platform for in situ probing the intrinsic reason for electrode capacity fading in Li ion based energy storage devices. In this device, a single vanadium oxide nanowire or single Si/a-Si core/shell nanowire was used as working electrode, and electrical transport of the single nanowire was recorded in situ to detect the evolution of the nanowire during charging and discharging. Along with lithium ion intercalation by shallow discharge, the vanadium oxide nanowire conductance was decreased over 2 orders. The conductance change can be restored to previous scale upon lithium ion deintercalation with shallow charge. However, when the nanowire was deeply discharged, the conductance dropped over 5 orders, indicating that permanent structure change happens when too many lithium ions were intercalated into the vanadium oxide layered structures. Different from vanadium oxide, the conductance of a single Si/a-Si core/shell nanowire monotonously decreased along with the electrochemical test, which agrees with Raman mapping of single Si/a-Si nanowire at different charge/discharge states, indicating permanent structure change after lithium ion insertion and extraction. Our present work provides the direct relationship between electrical transport, structure, and electrochemical properties of a single nanowire electrode, which will be a promising and straightforward way for nanoscale battery diagnosis.
Nano Letters | 2011
Muhammad Iqbal Bakti Utama; Zeping Peng; Rui Chen; Bo Peng; Xinlong Xu; Yajie Dong; Lai Mun Wong; Shijie Wang; Handong Sun; Qihua Xiong
We report a strategy for achieving epitaxial, vertically aligned cadmium chalcogenide (CdS, CdSe, and CdTe) nanowire arrays utilizing van der Waals epitaxy with (001) muscovite mica substrate. The nanowires, grown from a vapor transport process, exhibited diameter uniformity throughout their length, sharp interface to the substrate, and positive correlation between diameter and length with preferential growth direction of [0001] for the monocrystalline wurtzite CdS and CdSe nanowires, but of [111] for zinc blende CdTe nanowires, which also featured abundant twinning boundaries. Self-catalytic vapor-liquid-solid mechanism with hydrogen-assisted thermal evaporation is proposed to intepret the observations. Optical absorption from the as-grown CdSe nanowire arrays on mica at 10 K revealed intense first-order exciton absorption and its longitudinal optical phonon replica. A small Stokes shift (∼1.3 meV) was identified, suggesting the high quality of the nanowires. This study demonstrated the generality of van der Waals epitaxy for the growth of nanowire arrays and their potential applications in optical and energy related devices.
Optics Express | 2015
Ruidong Zhu; Zhenyue Luo; Haiwei Chen; Yajie Dong; Shin-Tson Wu
We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.
Advanced Materials | 2016
Yanan Wang; Juan He; Hao Chen; Jiangshan Chen; Ruidong Zhu; Pin Ma; Andrew Towers; Yuan Lin; Andre J. Gesquiere; Shin-Tson Wu; Yajie Dong
A simple yet general swelling-deswelling microencapsulation strategy has been developed to achieve well dispersed and intimately passivated crystalline organic-inorganic perovskites nanoparticles within polymer matrixes and results in a series of highly luminescent CH3 NH3 PbBr3 (MAPbBr3 )-polymer composite films with unprecedented water and thermal stabilities and superior color purity.
Physical Chemistry Chemical Physics | 2013
Zheng Li; Kyle C. Smith; Yajie Dong; Nir Baram; Frank Y. Fan; Jing Xie; Pimpa Limthongkul; W. Craig Carter; Yet-Ming Chiang
An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)3-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.
IEEE Electron Device Letters | 2009
Simon Vandenbrouck; Kamel Madjour; D. Theron; Yajie Dong; Yat Li; Charles M. Lieber; C. Gaquiere
GaN/AlN/AlGaN/GaN nanowire metal-insulator-semiconductor field-effect transistors (MISFETs) have been fabricated for the first time with submicrometer gate lengths. Their microwave performances were investigated. An intrinsic current-gain cutoff frequency (F T) of 5 GHz as well as an intrinsic maximum available gain (F MAX) cutoff frequency of 12 GHz have been obtained for the first time and associated with a gate length of 0.5 mum. These results show the great potentiality of GaN-based nanowire FETs for microwave applications.
ACS Applied Materials & Interfaces | 2016
Limin Guo; Kun Liang; Kyle Marcus; Zhao Li; Le Zhou; Prabhu Doss Mani; Hao Chen; Chen Shen; Yajie Dong; Lei Zhai; Kevin R. Coffey; Nina Orlovskaya; Yongho Sohn; Yang Yang
Novel Au@TiO2 plasmonic films were fabricated by individually placing Au nanoparticles into TiO2 nanocavity arrays through a sputtering and dewetting process. These discrete Au nanoparticles in TiO2 nanocavities showed strong visible-light absorption due to the plasmonic resonance. Photoelectrochemical studies demonstrated that the developed Au@TiO2 plasmonic films exhibited significantly enhanced catalytic activities toward oxygen reduction reactions with an onset potential of 0.92 V (vs reversible hydrogen electrode), electron transfer number of 3.94, and limiting current density of 5.2 mA cm-2. A superior ORR activity of 310 mA mg-1 is achieved using low Au loading mass. The isolated Au nanoparticle size remarkably affected the catalytic activities of Au@TiO2, and TiO2 coated with 5 nm Au (Au5@TiO2) exhibited the best catalytic function to reduce oxygen. The plasmon-enhanced reductive activity is attributed to the surface plasmonic resonance of isolated Au nanoparticles in TiO2 nanocavities and suppressed electron recombination. This work provides comprehensive understanding of a novel plasmonic system using isolated noble metals into nanostructured semiconductor films as a potential alternative catalyst for oxygen reduction reaction.