Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yakey Yaffe is active.

Publication


Featured researches published by Yakey Yaffe.


Nature | 2015

Dissecting neural differentiation regulatory networks through epigenetic footprinting

Michael J. Ziller; Reuven Edri; Yakey Yaffe; Julie Donaghey; Ramona Pop; William Mallard; Robbyn Issner; Casey A. Gifford; Alon Goren; Jeffrey Xing; Hongcang Gu; Davide Cacchiarelli; Alexander M. Tsankov; John L. Rinn; Tarjei S. Mikkelsen; Oliver Kohlbacher; Andreas Gnirke; Bradley E. Bernstein; Yechiel Elkabetz; Alexander Meissner

Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.


Molecular Biology of the Cell | 2009

Clustering and Lateral Concentration of Raft Lipids by the MAL Protein

Lee Goldstein Magal; Yakey Yaffe; Jeanne Shepshelovich; Juan F. Aranda; María C. de Marco; Katharina Gaus; Miguel A. Alonso; Koret Hirschberg

MAL, a compact hydrophobic, four-transmembrane-domain apical protein that copurifies with detergent-resistant membranes is obligatory for the machinery that sorts glycophosphatidylinositol (GPI)-anchored proteins and others to the apical membrane in epithelia. The mechanism of MAL function in lipid-raft-mediated apical sorting is unknown. We report that MAL clusters formed by two independent procedures-spontaneous clustering of MAL tagged with the tandem dimer DiHcRED (DiHcRED-MAL) in the plasma membrane of COS7 cells and antibody-mediated cross-linking of FLAG-tagged MAL-laterally concentrate markers of sphingolipid rafts and exclude a fluorescent analogue of phosphatidylethanolamine. Site-directed mutagenesis and bimolecular fluorescence complementation analysis demonstrate that MAL forms oligomers via xx intramembrane protein-protein binding motifs. Furthermore, results from membrane modulation by using exogenously added cholesterol or ceramides support the hypothesis that MAL-mediated association with raft lipids is driven at least in part by positive hydrophobic mismatch between the lengths of the transmembrane helices of MAL and membrane lipids. These data place MAL as a key component in the organization of membrane domains that could potentially serve as membrane sorting platforms.


Journal of Virology | 2013

An N-Terminal Amphipathic Helix in Dengue Virus Nonstructural Protein 4A Mediates Oligomerization and Is Essential for Replication

Omer Stern; Yu-Fu Hung; Olga Valdau; Yakey Yaffe; Eva Harris; Silke Hoffmann; Dieter Willbold; Ella H. Sklan

ABSTRACT Dengue virus (DENV) causes dengue fever, a major health concern worldwide. We identified an amphipathic helix (AH) in the N-terminal region of the viral nonstructural protein 4A (NS4A). Disruption of its amphipathic nature using mutagenesis reduced homo-oligomerization and abolished viral replication. These data emphasize the significance of NS4A in the life cycle of the dengue virus and demarcate it as a target for the design of novel antiviral therapy.


Journal of Virology | 2012

Role for TBC1D20 and Rab1 in Hepatitis C Virus Replication via Interaction with Lipid Droplet-Bound Nonstructural Protein 5A

Inbar Nevo-Yassaf; Yakey Yaffe; Meital Asher; Orly Ravid; Sharon Eizenberg; Yoav I. Henis; Yaakov Nahmias; Koret Hirschberg; Ella H. Sklan

ABSTRACT Replication and assembly of hepatitis C virus (HCV) depend on the hosts secretory and lipid-biosynthetic machinery. Viral replication occurs on endoplasmic reticulum (ER)-derived modified membranes, while viral assembly is thought to occur on lipid droplets (LDs). A physical association and coordination between the viral replication and assembly complexes are prerequisites for efficient viral production. Nonstructural protein 5A (NS5A), which localizes both to the ER and LDs, is an ideal candidate for this function. Here, the interaction of NS5A with host cell membranes and binding partners was characterized in living cells. The binding of NS5A to LDs is apparently irreversible, both in HCV-infected cells and when ectopically expressed. In HCV-infected cells, NS5A fluorescence was observed around the LDs and in perinuclear structures that were incorporated into a highly immobile platform superimposed over the ER membrane. Moreover, TBC1D20 and its cognate GTPase Rab1 are recruited by NS5A to LDs. The NS5A-TBC1D20 interaction was shown to be essential for the viral life cycle. In cells, expression of the Rab1 dominant negative (Rab1DN) GTPase mutant abolished steady-state LDs. In infected cells, Rab1DN induced the elimination of NS5A from viral replication sites. Our results demonstrate the significance of the localization of NS5A to LDs and support a model whereby its interaction with TBC1D20 and Rab1 affects lipid droplet metabolism to promote the viral life cycle.


Nature Communications | 2015

Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors

Reuven Edri; Yakey Yaffe; Michael J. Ziller; Naresh Mutukula; Rotem Volkman; Eyal David; Jasmine Jacob-Hirsch; Hagar Malcov; Carmit Levy; Gideon Rechavi; Irit Gat-Viks; Alexander Meissner; Yechiel Elkabetz

Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease.


Journal of Biological Chemistry | 2011

Distinct Molecular Regulation of Glycogen Synthase Kinase-3α Isozyme Controlled by Its N-terminal Region FUNCTIONAL ROLE IN CALCIUM/CALPAIN SIGNALING

Inbar Azoulay-Alfaguter; Yakey Yaffe; Avital Licht-Murava; Malgorzata Urbanska; Jacek Jaworski; Shmuel Pietrokovski; Koret Hirschberg; Hagit Eldar-Finkelman

Glycogen synthase kinase-3 (GSK-3) is expressed as two isozymes α and β. They share high similarity in their catalytic domains but differ in their N- and C-terminal regions, with GSK-3α having an extended glycine-rich N terminus. Here, we undertook live cell imaging combined with molecular and bioinformatic studies to understand the distinct functions of the GSK-3 isozymes focusing on GSK-3α N-terminal region. We found that unlike GSK-3β, which shuttles between the nucleus and cytoplasm, GSK-3α was excluded from the nucleus. Deletion of the N-terminal region of GSK-3α resulted in nuclear localization, and treatment with leptomycin B resulted in GSK-3α accumulation in the nucleus. GSK-3α rapidly accumulated in the nucleus in response to calcium or serum deprivation, and accumulation was strongly inhibited by the calpain inhibitor calpeptin. This nuclear accumulation was not mediated by cleavage of the N-terminal region or phosphorylation of GSK-3α. Rather, we show that calcium-induced GSK-3α nuclear accumulation was governed by GSK-3α binding with as yet unknown calpain-sensitive protein or proteins; this binding was mediated by the N-terminal region. Bioinformatic and experimental analyses indicated that nuclear exclusion of GSK-3α was likely an exclusive characteristic of mammalian GSK-3α. Finally, we show that nuclear localization of GSK-3α reduced the nuclear pool of β-catenin and its target cyclin D1. Taken together, these data suggest that the N-terminal region of GSK-3α is responsible for its nuclear exclusion and that binding with a calcium/calpain-sensitive product enables GSK-3α nuclear retention. We further uncovered a novel link between calcium and nuclear GSK-3α-mediated inhibition of the canonical Wnt/β-catenin pathway.Glycogen synthase kinase-3 (GSK-3) is expressed as two isozymes α and β. They share high similarity in their catalytic domains but differ in their N- and C-terminal regions, with GSK-3α having an extended glycine-rich N terminus. Here, we undertook live cell imaging combined with molecular and bioinformatic studies to understand the distinct functions of the GSK-3 isozymes focusing on GSK-3α N-terminal region. We found that unlike GSK-3β, which shuttles between the nucleus and cytoplasm, GSK-3α was excluded from the nucleus. Deletion of the N-terminal region of GSK-3α resulted in nuclear localization, and treatment with leptomycin B resulted in GSK-3α accumulation in the nucleus. GSK-3α rapidly accumulated in the nucleus in response to calcium or serum deprivation, and accumulation was strongly inhibited by the calpain inhibitor calpeptin. This nuclear accumulation was not mediated by cleavage of the N-terminal region or phosphorylation of GSK-3α. Rather, we show that calcium-induced GSK-3α nuclear accumulation was governed by GSK-3α binding with as yet unknown calpain-sensitive protein or proteins; this binding was mediated by the N-terminal region. Bioinformatic and experimental analyses indicated that nuclear exclusion of GSK-3α was likely an exclusive characteristic of mammalian GSK-3α. Finally, we show that nuclear localization of GSK-3α reduced the nuclear pool of β-catenin and its target cyclin D1. Taken together, these data suggest that the N-terminal region of GSK-3α is responsible for its nuclear exclusion and that binding with a calcium/calpain-sensitive product enables GSK-3α nuclear retention. We further uncovered a novel link between calcium and nuclear GSK-3α-mediated inhibition of the canonical Wnt/β-catenin pathway.


Journal of Cell Science | 2012

The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

Yakey Yaffe; Jeanne Shepshelovitch; Inbar Nevo-Yassaf; Adva Yeheskel; Hedva Shmerling; Joanna M. Kwiatek; Katharina Gaus; Metsada Pasmanik-Chor; Koret Hirschberg

Summary Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60–269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.


Journal of Cell Science | 2009

The length of cargo-protein transmembrane segments drives secretory transport by facilitating cargo concentration in export domains

Anna Dukhovny; Yakey Yaffe; Jeanne Shepshelovitch; Koret Hirschberg

The cellular destination of secretory proteins is determined by interactions of their targeting motifs with coat-protein complexes. The transmembrane domain (TMD) of secretory proteins also plays a central role in their transport and targeting. However, a comprehensive model that considers both TMD- and targeting-sequence-mediated transport has never been advanced. We focused on the secretory transport of two fluorescently tagged membrane proteins: vesicular stomatitis virus G tsO45 (VSVG), which is a cargo protein that is a thermoreversible mutant, and the Golgi-resident protein GalT-CFP. A quantitative approach was applied to analyze, in living cells, secretory transport dynamics, as well as cargo concentration of YFP-tagged VSVG mutants with one, three, five, seven, eight or nine amino acids deleted from their TMD, as well as two or four amino acids added to their TMD. Changes in TMD length affected secretory transport dynamics and the extent of cargo concentration in the ER exit sites, demonstrating that the capacity of the transport machinery to concentrate cargo depends on the length of the TMD of the cargo protein.


Virology | 2015

The interaction between the hepatitis C proteins NS4B and NS5A is involved in viral replication.

Naama David; Yakey Yaffe; Lior Hagoel; Menashe Elazar; Jeffrey S. Glenn; Koret Hirschberg; Ella H. Sklan

Hepatitis C virus (HCV) replicates in membrane associated, highly ordered replication complexes (RCs). These complexes include viral and host proteins necessary for viral RNA genome replication. The interaction network among viral and host proteins underlying the formation of these RCs is yet to be thoroughly characterized. Here, we investigated the association between NS4B and NS5A, two critical RC components. We characterized the interaction between these proteins using fluorescence resonance energy transfer and a mammalian two-hybrid system. Specific tryptophan residues within the C-terminal domain (CTD) of NS4B were shown to mediate this interaction. Domain I of NS5A, was sufficient to mediate its interaction with NS4B. Mutations in the NS4B CTD tryptophan residues abolished viral replication. Moreover, one of these mutations also affected NS5A hyperphosphorylation. These findings provide new insights into the importance of the NS4B-NS5A interaction and serve as a starting point for studying the complex interactions between the replicase subunits.


PLOS Computational Biology | 2015

Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development

Omer Ziv; Assaf Zaritsky; Yakey Yaffe; Naresh Mutukula; Reuven Edri; Yechiel Elkabetz

Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes—highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)—a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation—a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of ACTIN or NON-MUSCLE MYOSIN-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

Collaboration


Dive into the Yakey Yaffe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katharina Gaus

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge